4,507 research outputs found

    Temperature equilibration in a fully ionized plasma: electron-ion mass ratio effects

    Full text link
    Brown, Preston, and Singleton (BPS) produced an analytic calculation for energy exchange processes for a weakly to moderately coupled plasma: the electron-ion temperature equilibration rate and the charged particle stopping power. These precise calculations are accurate to leading and next-to-leading order in the plasma coupling parameter, and to all orders for two-body quantum scattering within the plasma. Classical molecular dynamics can provide another approach that can be rigorously implemented. It is therefore useful to compare the predictions from these two methods, particularly since the former is theoretically based and the latter numerically. An agreement would provide both confidence in our theoretical machinery and in the reliability of the computer simulations. The comparisons can be made cleanly in the purely classical regime, thereby avoiding the arbitrariness associated with constructing effective potentials to mock up quantum effects. We present here the classical limit of the general result for the temperature equilibration rate presented in BPS. We examine the validity of the m_electron/m_ion --> 0 limit used in BPS to obtain a very simple analytic evaluation of the long-distance, collective effects in the background plasma.Comment: 14 pages, 4 figures, small change in titl

    A statistical model for the intrinsically broad superconducting to normal transition in quasi-two-dimensional crystalline organic metals

    Full text link
    Although quasi-two-dimensional organic superconductors such as κ\kappa-(BEDT-TTF)2_2Cu(NCS)2_2 seem to be very clean systems, with apparent quasiparticle mean-free paths of several thousand \AA, the superconducting transition is intrinsically broad (e.g ∼1\sim 1 K wide for Tc≈10T_c \approx 10 K). We propose that this is due to the extreme anisotropy of these materials, which greatly exacerbates the statistical effects of spatial variations in the potential experienced by the quasiparticles. Using a statistical model, we are able to account for the experimental observations. A parameter xˉ\bar{x}, which characterises the spatial potential variations, may be derived from Shubnikov-de Haas oscillation experiments. Using this value, we are able to predict a transition width which is in good agreement with that observed in MHz penetration-depth measurements on the same sample.Comment: 8 pages, 2 figures, submitted to J. Phys. Condens. Matte

    Hawking radiation, Unruh radiation and the equivalence principle

    Full text link
    We compare the response function of an Unruh-DeWitt detector for different space-times and different vacua and show that there is a {\it detailed} violation of the equivalence principle. In particular comparing the response of an accelerating detector to a detector at rest in a Schwarzschild space-time we find that both detectors register thermal radiation, but for a given, equivalent acceleration the fixed detector in the Schwarzschild space-time measures a higher temperature. This allows one to locally distinguish the two cases. As one approaches the horizon the two temperatures have the same limit so that the equivalence principle is restored at the horizon.Comment: 9 pages. Added references and added discussion. To be published in PR

    Glueball Spin

    Get PDF
    The spin of a glueball is usually taken as coming from the spin (and possibly the orbital angular momentum) of its constituent gluons. In light of the difficulties in accounting for the spin of the proton from its constituent quarks, the spin of glueballs is reexamined. The starting point is the fundamental QCD field angular momentum operator written in terms of the chromoelectric and chromomagnetic fields. First, we look at the restrictions placed on the structure of glueballs from the requirement that the QCD field angular momentum operator should satisfy the standard commutation relationships. This can be compared to the electromagnetic charge/monopole system, where the quantization of the field angular momentum places restrictions (i.e. the Dirac condition) on the system. Second, we look at the expectation value of this operator under some simplifying assumptions.Comment: 11 pages, 0 figures; added references and some discussio

    Inadequacies in the conventional treatment of the radiation field of moving sources

    Full text link
    There is a fundamental difference between the classical expression for the retarded electromagnetic potential and the corresponding retarded solution of the wave equation that governs the electromagnetic field. While the boundary contribution to the retarded solution for the {\em potential} can always be rendered equal to zero by means of a gauge transformation that preserves the Lorenz condition, the boundary contribution to the retarded solution of the wave equation governing the {\em field} may be neglected only if it diminishes with distance faster than the contribution of the source density in the far zone. In the case of a source whose distribution pattern both rotates and travels faster than light {\em in vacuo}, as realized in recent experiments, the boundary term in the retarded solution governing the field is by a factor of the order of R1/2R^{1/2} {\em larger} than the source term of this solution in the limit that the distance RR of the boundary from the source tends to infinity. This result is consistent with the prediction of the retarded potential that part of the radiation field generated by a rotating superluminal source decays as R−1/2R^{-1/2}, instead of R−1R^{-1}, a prediction that is confirmed experimentally. More importantly, it pinpoints the reason why an argument based on a solution of the wave equation governing the field in which the boundary term is neglected (such as appears in the published literature) misses the nonspherical decay of the field

    Isotope effect in quasi-two-dimensional metal-organic antiferromagnets

    Get PDF
    Although the isotope effect in superconducting materials is well-documented, changes in the magnetic properties of antiferromagnets due to isotopic substitution are seldom discussed and remain poorly understood. This is perhaps surprising given the possible link between the quasi-two-dimensional (Q2D) antiferromagnetic and superconducting phases of the layered cuprates. Here we report the experimental observation of shifts in the N\'{e}el temperature and critical magnetic fields (ΔTN/TN≈4\Delta T_{\rm N}/T_{\rm N}\approx 4%; ΔBc/Bc≈4\Delta B_{\rm c}/B_{\rm c}\approx 4%) in a Q2D organic molecular antiferromagnets on substitution of hydrogen for deuterium. These compounds are characterized by strong hydrogen bonds through which the dominant superexchange is mediated. We evaluate how the in-plane and inter-plane exchange energies evolve as the hydrogens on different ligands are substituted, and suggest a possible mechanism for this effect in terms of the relative exchange efficiency of hydrogen and deuterium bonds

    Small animal disease surveillance: respiratory disease 2017

    Get PDF
    This report focuses on surveillance for respiratory disease in companion animals. It begins with an analysis of data from 392 veterinary practices contributing to the Small Animal Veterinary Surveillance Network (SAVSNET) between January and December 2017. The following section describes canine respiratory coronavirus infections in dogs, presenting results from laboratory-confirmed cases across the country between January 2010 and December 2017. This is followed by an update on the temporal trends of three important syndromes in companion animals, namely gastroenteritis, pruritus and respiratory disease, from 2014 to 2017. A fourth section presents a brief update on Streptococcus equi subspecies zooepidemicus in companion animals. The final section summarises some recent developments pertinent to companion animal health, namely eyeworm (Thelazzia callipaeda) infestations in dogs imported to the UK and canine influenza virus in the USA and Canada

    Opening of DNA double strands by helicases. Active versus passive opening

    Get PDF
    Helicase opening of double-stranded nucleic acids may be "active" (the helicase directly destabilizes the dsNA to promote opening) or "passive" (the helicase binds ssNA available due to a thermal fluctuation which opens part of the dsNA). We describe helicase opening of dsNA, based on helicases which bind single NA strands and move towards the double-stranded region, using a discrete ``hopping'' model. The interaction between the helicase and the junction where the double strand opens is characterized by an interaction potential. The form of the potential determines whether the opening is active or passive. We calculate the rate of passive opening for the helicase PcrA, and show that the rate increases when the opening is active. Finally, we examine how to choose the interaction potential to optimize the rate of strand separation. One important result is our finding that active opening can increase the unwinding rate by 7 fold compared to passive opening.Comment: 13 pages, 3 figure
    • …
    corecore