462 research outputs found

    The Radio Evolution of SN 2001gd

    Get PDF
    We present the results of observations of the radio emission from Supernova 2001gd in NGC 5033 from 2002 February 8 through 2006 September 25. The data were obtained using the Very Large Array at wavelengths of 1.3 cm (22.4 GHz), 2 cm (14.9 GHz), 3.6 cm (8.4 GHz), 6 cm (4.9 GHz), and 20 cm (1.5 GHz), with one upper limit at 90 cm (0.3 GHz). In addition, one detection has been provided by the Giant Metrewave Radio Telescope at 21 cm (1.4 GHz). SN 2001gd was discovered in the optical well past maximum light, so that it was not possible to obtain many of the early radio "turn-on" measurements which are important for estimating the local circumstellar medium (CSM) properties. Only at 20 cm were turn-on data available. However, our analysis and fitting of the radio light curves, and the assumption that the Type IIb SN 2001gd resembles the much better studied Type IIb SN 1993J, enables us to describe the radio evolution as being very regular through day ~550 and consistent with a nonthermal-emitting model with a thermal absorbing CSM. The presence of synchrotron-self absorption (SSA) at early times is implied by the data, but determination of the exact relationship between the SSA component from the emitting region and the free-free absorption component from the CSM is not possible as there are insufficient early measurements to distinguish between models. After day ~550, the radio emission exhibits a dramatically steeper decline rate which, assuming similarity to SN 1993J, can be described as an exponential decrease with an e-folding time of 500 days. We interpret this abrupt change in the radio flux density decline rate as implying a transition of the shock front into a more tenuous region of circumstellar material. A similar change in radio evolution has been seen earlier in other SNe such as SN 1988Z, SN 1980K, and SN 1993J.Comment: 3 tables, 2 figures, To appear in the Astrophysical Journa

    Radio Observations of SN 1980K: Evidence for Rapid Presupernova Evolution

    Get PDF
    New observations of SN 1980K made with the VLA at 20 and 6 cm from 1994 April through 1996 October show that the supernova (SN) has undergone a significant change in its radio emission evolution, dropping by a factor of ~2 below the flux density S \propto t^{-0.73} power-law decline with time t observed earlier. However, although S at all observed frequencies has decreased significantly, its current spectral index of \alpha= -0.42\pm0.15 (S \propto \nu^{+\alpha}) is consistent with the previous spectral index of \alpha=-0.60_{-0.07}^{+0.04}. It is suggested that this decrease in emission may be due to the SN shock entering a new region of the circumstellar material which has a lower density than that expected for a constant speed (w), constant mass-loss rate (Mdot) wind from the progenitor. If such an interpretation is correct, the difference in wind and shock speeds appears to indicate a significant evolution in the mass-loss history of the SN progenitor ~10^4 years before explosion, with a change in circumstellar density (\propto Mdot/w) occurring over a time span of \lesssim 4 kyr. Such features could be explained in terms of a fast ``blue-loop'' evolutionary phase of a relatively massive pre-SN progenitor star. If so, we may, for the first time, provide a stringent constraint on the mass of the SN progenitor based solely on the SN's radio emission.Comment: 22 pages, 3 figures, to appear in Ap

    Spitzer measurements of atomic and molecular abundances in the Type IIP SN 2005af

    Get PDF
    We present results based on Spitzer Space Telescope mid-infrared (3.6-30 micron) observations of the nearby IIP supernova 2005af. We report the first ever detection of the SiO molecule in a Type IIP supernova. Together with the detection of the CO fundamental, this is an exciting finding as it may signal the onset of dust condensation in the ejecta. From a wealth of fine-structure lines we provide abundance estimates for stable Ni, Ar, and Ne which, via spectral synthesis, may be used to constrain nucleosynthesis models.Comment: ApJ Letters (accepted

    Recent Star Formation in Sextans A

    Full text link
    We investigate the relationship between the spatial distributions of stellar populations and of neutral and ionized gas in the Local Group dwarf irregular galaxy Sextans A. This galaxy is currently experiencing a burst of localized star formation, the trigger of which is unknown. We have resolved various populations of stars via deep UBV(RI)_C imaging over an area with diameter \sim 5.'3. We have compared our photometry with theoretical isochrones appropriate for Sextans A, in order to determine the ages of these populations. We have mapped out the history of star formation, most accurately for times \lesssim 100 Myr. We find that star formation in Sextans A is correlated both in time and space, especially for the most recent (\lesssim 12 Myr) times. The youngest stars in the galaxy are forming primarily along the inner edge of the large H I shell. Somewhat older populations, \lesssim 50 Myr, are found inward of the youngest stars. Progressively older star formation, from \sim 50--100 Myr, appears to have some spatially coherent structure and is more centrally concentrated. The oldest stars we can accurately sample appear to have approximately a uniform spatial distribution, which extends beyond a surface brightness of \mu_B \simeq 25.9 mag arcsec^{-2} (or, a radius r \simeq 2.'3$). Although other processes are also possible, our data provides support for a mechanism of supernova-driven expansion of the neutral gas, resulting in cold gas pileup and compression along the H I shell and sequential star formation in recent times.Comment: 64 pages, 22 figures, to appear in A

    Ursinus College Alumni Journal, March 1966

    Get PDF
    First words • From the President • A commitment to change • The Ursinus plan • We\u27re planning a brand-new old-time Alumni Day • A disarmed world: two views • The one-world syndrome • Scenario for a disarmed conflict • The paid-up parade • Centennial fund moves toward first-year goal • Of strength & endurance • Check your candidates • The agency has transposed the key of campus life • Campus clippings: Gift from Gulf; Kodak focuses on U.C.; The fine arts; Folklore grant; Neighbors of the college; Scholarship winner; College Boards; Visual aids; Meistersingers • Sporting scene: Football; Soccer; Tennis; Track; Baseball; Basketball • Ursinus phys-edders continue to excel • Women of distinction • Regionals • Class notebook • Weddings • Births • In memoriam • End quotes: The story of solicitationhttps://digitalcommons.ursinus.edu/alumnijournal/1087/thumbnail.jp

    Late-Time Optical and Ultraviolet Spectra of SN 1979C and SN 1980K

    Get PDF
    A low-dispersion Keck I spectrum of SN 1980K taken in 1995 August (t = 14.8 yr after explosion) and a spectrum taken in 1997 November (t = 17.0 yr) at the MDM Observatory show broad 5500 km s-1 emission lines of Hα, [O I] 6300, 6364 Å, and [O II] 7319, 7330 Å. Weaker but similarly broad lines detected include [Fe II] 7155 Å, [S II] 4068, 4072 Å, and a blend of [Fe II] lines at 5050–5400 Å. The presence of strong [S II] 4068, 4072 Å emission but a lack of [S II] 6716, 6731 Å emission suggests electron densities of 105–106 cm-3. From the 1997 spectrum, we estimate an Hα flux of (1.3 ± 0.2) × 10-15 ergs cm-2 s-1, indicating a 25% decline from the 1987–1992 levels during the period 1994 to 1997, possibly related to a reported decrease in its nonthermal radio emission. A 1993 May, Multiple Mirror Telescope spectrum of SN 1979C (t = 14.0 yr) shows a somewhat different spectrum from that of SN 1980K. Broad, 6000 km s-1 emission lines are also seen but with weaker Hα, stronger [O III] 4959, 5007 Å, more highly clumped [O I] and [O II] line profiles, no detectable [Fe II] 7155 Å emission, and a faint but very broad emission feature near 5750 Å. A 1997 Hubble Space Telescope Faint Object Spectrograph, near-UV spectrum (2200–4500 Å) shows strong lines of C II] 2324, 2325 Å, [O II] 2470 Å, and Mg II 2796, 2803 Å, along with weak [Ne III] 3969 Å, [S II] 4068, 4072 Å, and [O III] 4363 Å emissions. The UV emission lines show a double-peak profile with the blueward peak substantially stronger than the red, suggesting dust extinction within the expanding ejecta [E(B-V) = 0.11–0.16 mag]. The lack of detectable [O II] 3726, 3729 Å emission, together with [O III] λλ(4959 + 5007)/λ4363 4, implies electron densities 106–107 cm-3. These Type II linear supernovae (SNe II-L) spectra show general agreement with the lines expected in a circumstellar interaction model, but the specific models that are available show several differences with the observations. High electron densities (105–107 cm-3) result in stronger collisional de-excitation than assumed in the models, thereby explaining the absence of several moderate to strong predicted lines such as [O II] 3726, 3729 Å, [N II] 6548, 6583 Å, and [S II] 6716, 6731 Å. Interaction models are needed that are specifically suited to these supernovae. We review the overall observed range of late-time SNe II-L properties and briefly discuss their properties relative to young, ejecta-dominated Galactic supernova remnants

    Signatures of delayed detonation, asymmetry, and electron capture in the mid-infrared spectra of supernovae 2003hv and 2005df

    Get PDF
    We present mid-infrared (5.2-15.2 μm) spectra of the Type Ia supernovae (SNe Ia) 2003hv and 2005df observed with the Spitzer Space Telescope. These are the first observed mid-infrared spectra of thermonuclear supernovae, and show strong emission from fine-structure lines of Ni, Co, S, and Ar. The detection of Ni emission in SN 2005df 135 days after the explosion provides direct observational evidence of high-density nuclear burning forming a significant amount of stable Ni in a SN Ia. The SN 2005df Ar lines also exhibit a two-pronged emission profile, implying that the Ar emission deviates significantly from spherical symmetry. The spectrum of SN 2003hv also shows signs of asymmetry, exhibiting blueshifted [Co III], which matches the blueshift of [Fe II ] lines in nearly coeval near-infrared spectra. Finally, local thermodynamic equilibrium abundance estimates for the yield of radioactive ^(56)Ni give M^(56)Ni ≈ 0.5 M⊙, for SN 2003hv, but only M^(56)Ni ≈ 0.13-0.22 M⊙ for the apparently subluminous SN 2005df, supporting the notion that the luminosity of SNe Ia is primarily a function of the radioactive ^(56)Ni yield. The observed emission-line profiles in the SN 2005df spectrum indicate a chemically stratified ejecta structure, which matches the predictions of delayed detonation (DD) models, but is entirely incompatible with current three-dimensional deflagration models. Furthermore, the degree that this layering persists to the innermost regions of the supernova is difficult to explain even in a DD scenario, where the innermost ejecta are still the product of deflagration burning. Thus, while these results are roughly consistent with a delayed detonation, it is clear that a key piece of physics is still missing from our understanding of the earliest phases of SN Ia explosions

    Nonuniform sampling and maximum entropy reconstruction in multidimensional NMR

    Get PDF
    NMR spectroscopy is one of the most powerful and versatile analytic tools available to chemists. The discrete Fourier transform (DFT) played a seminal role in the development of modern NMR, including the multidimensional methods that are essential for characterizing complex biomolecules. However, it suffers from well-known limitations: chiefly the difficulty in obtaining high-resolution spectral estimates from short data records. Because the time required to perform an experiment is proportional to the number of data samples, this problem imposes a sampling burden for multidimensional NMR experiments. At high magnetic field, where spectral dispersion is greatest, the problem becomes particularly acute. Consequently multidimensional NMR experiments that rely on the DFT must either sacrifice resolution in order to be completed in reasonable time or use inordinate amounts of time to achieve the potential resolution afforded by high-field magnets.Maximum entropy (MaxEnt) reconstruction is a non-Fourier method of spectrum analysis that can provide high-resolution spectral estimates from short data records. It can also be used with nonuniformly sampled data sets. Since resolution is substantially determined by the largest evolution time sampled, nonuniform sampling enables high resolution while avoiding the need to uniformly sample at large numbers of evolution times. The Nyquist sampling theorem does not apply to nonuniformly sampled data, and artifacts that occur with the use of nonuniform sampling can be viewed as frequency-aliased signals. Strategies for suppressing nonuniform sampling artifacts include the careful design of the sampling scheme and special methods for computing the spectrum. Researchers now routinely report that they can complete an N-dimensional NMR experiment 3 times faster (a 3D experiment in one ninth of the time). As a result, high-resolution three- and four-dimensional experiments that were prohibitively time consuming are now practical. Conversely, tailored sampling in the indirect dimensions has led to improved sensitivity.Further advances in nonuniform sampling strategies could enable further reductions in sampling requirements for high resolution NMR spectra, and the combination of these strategies with robust non-Fourier methods of spectrum analysis (such as MaxEnt) represent a profound change in the way researchers conduct multidimensional experiments. The potential benefits will enable more advanced applications of multidimensional NMR spectroscopy to study biological macromolecules, metabolomics, natural products, dynamic systems, and other areas where resolution, sensitivity, or experiment time are limiting. Just as the development of multidimensional NMR methods presaged multidimensional methods in other areas of spectroscopy, we anticipate that nonuniform sampling approaches will find applications in other forms of spectroscopy

    Ursinus College Alumni Journal, November 1959

    Get PDF
    President\u27s page • President Helfferich honored • Office of Admissions • Founders\u27 Day • Chemistry at Ursinus • Ruth H. Rothenberger, \u2736 Dean of Women • Faculty summers • National Science Foundation grant • Whatley, Dean of Men and assistant football coach • A commentary: American arms policy • Critique • Seelye appointed to teach Spanish • Evening School • Directory to be sent to all living alumni • North Jersey-Shore regional organized • Old Timers\u27 Day • Schoolmen\u27s Week luncheon • Alumnae undefeated for third consecutive year • Impressions of Sweden • Among the Andean Indians • Wrestling • Hockey • Basketball • New coaches • Football • Six years of alumni sponsorship completed: $155,746 collected for Ursinus in this period • 1959 Loyalty Fund report • Loyalty Fund all-stars honored at banquet • Publicity • Honor roll by classes • Thomas Beddow, \u2736 Loyalty Fund chairman of the year • The last shall be first • Results of the 1959 Loyalty Fund campaign • Contributors for the 1959 Loyalty Fund campaign • News about ourselves • Ursinus Women\u27s Club executive board meets • Messiah to be presented • Weddings • Births • Necrologyhttps://digitalcommons.ursinus.edu/alumnijournal/1066/thumbnail.jp

    The Peculiar Debris Disk of HD 111520 as Resolved by the Gemini Planet Imager

    Full text link
    Using the Gemini Planet Imager (GPI), we have resolved the circumstellar debris disk around HD 111520 at a projected range of ~30-100 AU in both total and polarized HH-band intensity. The disk is seen edge-on at a position angle of ~165^{\circ} along the spine of emission. A slight inclination or asymmetric warping are covariant and alters the interpretation of the observed disk emission. We employ 3 point spread function (PSF) subtraction methods to reduce the stellar glare and instrumental artifacts to confirm that there is a roughly 2:1 brightness asymmetry between the NW and SE extension. This specific feature makes HD 111520 the most extreme examples of asymmetric debris disks observed in scattered light among similar highly inclined systems, such as HD 15115 and HD 106906. We further identify a tentative localized brightness enhancement and scale height enhancement associated with the disk at ~40 AU away from the star on the SE extension. We also find that the fractional polarization rises from 10 to 40% from 0.5" to 0.8" from the star. The combination of large brightness asymmetry and symmetric polarization fraction leads us to believe that an azimuthal dust density variation is causing the observed asymmetry.Comment: 9 pages, 8 Figures, 1 table, Accepted to Ap
    corecore