
 1 

Nonuniform Sampling and Maximum Entropy 

Reconstruction in Multidimensional NMR 

Jeffrey C. Hoch1*, Mark W. Maciejewski1, Mehdi Mobli2, Adam D. Schuyler1, and Alan S. Stern3 

1University of Connecticut Health Center, Farmington, CT USA 

2Centre for Advanced Imaging, University of Queensland, St. Lucia, QLD AUS 

3Rowland Institute at Harvard, Cambridge, MA USA 

 

KEYWORDS nonuniform sampling, sparse sampling, compressed sensing, multidimensional 

NMR, spectrum analysis, non-Fourier methods, maximum entropy.  

 

  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/19773617?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2 

Maximum Entropy Reconstruction and Nonuniform Sampling 
in Multidimensional NMR 

JEFFREY C. HOCH1, MARK W. MACIEJEWSKI1, MEHDI MOBLI2, ADAM D. 
SCHUYLER1, AND ALAN S. STERN3 

1University of Connecticut Health Center, Farmington, CT USA 

2Center for Advanced Imaging, University of Queensland, St. Lucia, QLD AUS 

3Rowland Institute at Harvard, Cambridge, MA USA 

(DUE DATE NOVEMBER, 2013). 

C O N S P E C T U S   
NMR spectroscopy is one of the most powerful and versatile analytic tools 

available to chemists. The discrete Fourier transform (DFT) played a seminal role 
in the development of modern NMR, including the multidimensional methods that 
are essential for complex biomolecules, but it suffers from well-known limitations. 

Chief among these is the difficulty of obtaining high-resolution spectral estimates 
from short data records. For multidimensional NMR experiments, this imposes a 
sampling burden, because the time required to perform an experiment is 
proportional to the number of data samples. At high magnetic field, where spectral 
dispersion is greatest, the problem becomes particularly acute. Consequently 
multidimensional NMR experiments that rely on the DFT either must sacrifice 

resolution in order to be completed in reasonable time, or they must use inordinate 
amounts of time to achieve the potential resolution afforded by high-field 
magnets. Maximum entropy (MaxEnt) reconstruction is a non-Fourier method of 
spectrum analysis capable of providing high-resolution spectral estimates from short data records. It can also be used with nonuniformly sampled 
data sets. Since resolution is substantially determined by the largest evolution time sampled, nonuniform sampling enables high resolution while 
avoiding the need to uniformly sample at large numbers of evolution times. The Nyquist sampling theorem does not apply to nonuniformly 

sampled data, and artifacts that attend the use of nonuniform sampling can be viewed as frequency-aliased signals. Strategies for suppressing 
nonuniform sampling artifacts include careful design of the sampling scheme and special methods for computing the spectrum.  

Time savings of a factor of three for each of the N-1 indirect dimensions of an N-dimensional NMR experiment are now routinely reported, 
making practical high-resolution 3- and 4-dimensional experiments that were previously prohibitively time consuming. Conversely, tailored 
sampling in the indirect dimensions has been utilized to improve sensitivity. Improvements in nonuniform sampling strategies appear poised to 
enable further reductions in sampling requirements for high resolution NMR spectra, and the combination of these strategies with robust non-

Fourier methods of spectrum analysis (such as MaxEnt) represent a profound change in the way multidimensional experiments are conducted. 
The potential benefits will enable more advanced applications of multidimensional NMR spectroscopy to biological macromolecules, 
metabolomics, natural products, dynamic systems, and other areas where resolution, sensitivity, or experiment time are limiting. Just as the 
development of multidimensional NMR methods presaged multidimensional methods in other areas of spectroscopy, we anticipate that 
nonuniform sampling approaches will find application in other forms of spectroscopy. 
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Introduction 

 NMR spectroscopy can probe all states of matter and quantify the composition of 

mixtures, structures of molecules, dynamics of rate processes, and thermodynamics of 

association. This versatility comes at a price; useful sensitivity and high resolution requires 

expensive magnets and lengthy experiments. The introduction of Fourier Transform (FT) NMR 

enabled dramatic improvements in sensitivity and resolution1. In FT-NMR, the response of spins 

to a strong RF pulse is recorded, and the discrete FT (DFT) is used to compute the spectrum. In 

2D NMR, for example, a delay between two RF pulses, representing an “indirect” time 

dimension, is parametrically sampled by repeating the experiment using different values for the 

time delay. Successive Fourier transformation along the rows and the columns of the resulting 

data matrix yields a two-dimensional spectrum.  FT-NMR readily generalizes to arbitrary 

numbers of dimensions2, enabling the resolution of individual nuclear resonances in complex 

systems. 

The time required for a multidimensional NMR experiment is directly proportional to the 

number of samples in the indirect dimensions. Together, the requirements of uniform sampling 

(required by the DFT) with sufficiently small increments of the delay time to span the width of 

the spectrum (the Nyquist condition3) and long evolution times (for high resolution) mean that 

high-resolution spectra require lengthy experiments. Conversely, shorter experiments result in 

lower resolution spectra. Conventional uniform sampling in a high-resolution 3D experiment can 

require over a week of measuring time. While 3D experiments have become routine, resolution 

along the indirect dimensions is usually substantially less than the acquisition dimension. 4D 

experiments are far from routine, because of the time required to collect data sufficient for even 

moderate resolution.  
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The subject of this Account is the use of nonuniform sampling (NUS) methods in 

multidimensional NMR. NUS permits high-resolution spectra to be obtained from short data 

records, drastically reducing experiment times. NUS can also be tailored to increase sensitivity. 

We focus on maximum entropy (MaxEnt) reconstruction, one of a number of non-Fourier 

methods of spectrum analysis suitable for NUS data, because it is particularly versatile and 

robust. Fast NMR methods are a burgeoning area of development4, and NUS represents just one 

approach, but one of the most general.  

The MaxEnt method. MaxEnt reconstruction finds the spectrum that maximizes the entropy 

while maintaining consistency with the measured data.  The use of entropy as a measure of 

missing information originated with Shannon and is the foundation for information theory5.
 

Consistency of the computed spectrum f with the measured data d is defined by the condition 

C(f,d) =C0           (1) 

where C(f, d) is the unweighted χ-squared statistic, 

C(f,d) = mi − di
2

i=0

M−1

∑ = iDFT(f )i − di
2

i=0

M−1

∑
     (2)

 

and C0 is an estimate of the noise level; iDFT is the inverse DFT, and m is a “mock data” vector 

given by iDFT(f). The constrained optimization problem is converted to an unconstrained 

optimization through introduction of a new objective function 

𝑄 𝐟,𝐝 = 𝑆 𝐟 − 𝜆𝐶 𝐟,𝐝 ,        (3) 
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where S(f) is the entropy. The unconstrained problem is to find the f that minimizes Q(f, d), 

where the value of the Lagrange multiplier λ is adjusted to obtain C = C0. C(f,d) and S(f), and 

thus Q(f,d), readily generalize to multiple dimensions. The seminal development of the 

“Cambridge” algorithm6, which is both robust and highly efficient, launched the modern 

application of the maximum entropy principle in NMR. Extensions to the Cambridge algorithm 

have provided additional performance gains and adapted it to the requirements of phase-sensitive 

NMR data3. 

A schematic diagram for MaxEnt reconstruction is shown in Figure 1. The algorithm 

begins with a trial spectrum equal to zero everywhere. At each iteration, m is computed from the 

current value of f. The algorithm constructs a small set of direction vectors, and computes a 

quadratic approximation to the entropy in the subspace spanned by these vectors. Since C(f,d) is 

itself quadratic, it is possible to analytically maximize S(f) subject to the constraint in this 

subspace. This results in f for the next iteration. Because it makes no assumptions about the 

nature of the signals, MaxEnt reconstruction can be applied to data with arbitrary lineshapes. The 

computation of C(f,d) can be limited to arbitrary subsets of m; this is the basis for the application 

of MaxEnt with nonuniform sampling methods. 

In principle multidimensional MaxEnt spectra can be reconstructed by computing the 

overall entropy of the full spectrum, or by computing a series of sub-spectra. For example, a 2D 

MaxEnt spectrum can be computed via a series of 1D MaxEnt reconstructions in the indirect 

dimension following Fourier processing of the acquisition dimension. If the constraint, C0, is 

kept constant between sub-spectra, variation in the weighting (λ) of the constraint and the 

entropy can result. This will introduce small changes in the reconstruction between subspectra 

and may have a significant effect on peak shapes. By using a constant value for λ, one can 
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eliminate the variation of the nonlinearity between sub-spectra and obtain the same result as 

reconstructing the entire spectrum at once. A good estimate of λ can be made by finding 

representative sub-spectra where the constraint C(f, d)=C0 is satisfied and using the value of λ 

found for these sub-spectra to perform the complete reconstruction. The same strategy can be 

applied to higher dimensions, i.e. a 3D spectrum can be constructed as a series of 2D plane 

reconstructions. The approach of using a fixed value of λ, rather than a fixed value of C0, is 

called the constant-λ algorithm. 7  

While the formal derivation of the MaxEnt algorithm specifies criteria for determining 

the value of C0
 and another parameter that appears in the complex entropy functional, applying 

those criteria in practice is challenging. Fortunately the results of MaxEnt reconstruction are not 

terribly dependent on the precise values of the parameters, over a wide range. A heuristic 

algorithm has been shown to automatically find useful values for the adjustable parameters.8  

While numerical solution is required in the general case, there is a special case where 

MaxEnt reconstruction has an analytical solution that gives insights into how MaxEnt 

reconstruction works. When N (the number of points in the reconstructed spectrum) is equal to M 

(the number of experimental data points), Parseval's theorem3 permits the constraint statistic to 

be computed in the frequency domain. The MaxEnt solution9 corresponds to a nonlinear 

transformation, applied point-by-point to the DFT of the time domain data. Figure 2 illustrates 

the transformation 𝛿!!!(𝑥) for various values of λ (panel A). The transformation depends on the 

value of λ, and has the effect of scaling every point in the spectrum down, but points closer to the 

baseline are scaled down more than points far above the baseline (panel B). This explains why 

noise near the baseline is suppressed more effectively than noise superimposed on top of broad 
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features. This result implies an important distinction between signal-to-noise-ratio (SNR) and 

sensitivity. Applying the same transformation to both the signal and the noise cannot improve 

sensitivity, since peaks that are comparable in height to the noise level will be reduced by the 

same amount as the noise. The SNR may increase, but small peaks will be just as difficult to 

distinguish as before. In this special case, gains in SNR in the MaxEnt reconstruction are purely 

cosmetic. In the more general case, there may be real sensitivity gains10,11. However, a prudent 

investigator will always question whether gains in SNR really correspond to gains in sensitivity.9 

Note that as λ increases, the relative weight given to the constraint term in the objective function 

increases, and the transformation becomes more nearly linear. This property has been used to 

perform MaxEnt reconstructions that are nearly linear.12 

The nonlinearity of MaxEnt has important implications when quantification of peak 

intensities or volumes is required, such as nuclear Overhauser effect measurements. One 

approach is to tightly constrain the reconstruction to match the data, which forces the 

reconstruction to be nearly linear (although at the expense of noise suppression)12,13. Another is to 

inject synthetic signals into the time domain data prior to reconstruction. A calibration curve can 

then be constructed by comparing measured intensities or volumes to the known amplitudes of 

the injected signals14. 

 MaxEnt is just one of a host of methods that have been developed as alternatives to the 

DFT for reconstructing spectra from NUS data. Some methods place restrictions on the way the 

data are sampled, for example along radial vectors in time. Others support arbitrary sampling 

schemes. Strengths and weaknesses of the various methods have been compared recently4.  

Sampling fundamentals. The Nyquist sampling theorem states that to unambiguously determine 

frequencies, the sampling interval Δt must be at least as short as the reciprocal of the spectral 
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width SW spanned by frequency components in the signal. Frequencies higher than 1/Δt are 

aliased, or mirrored about the spectral limits. The interval between frequency elements (the 

digital resolution) of the DFT is 1/NΔt, where N is the number of samples collected; NΔt is the 

maximum evolution time. The number of samples required to maintain a given maximum 

evolution time increases with magnetic field strength, because increasing field increases SW. 

NUS schemes that sample a subset of the evolution times normally sampled using uniform 

sampling are called on-grid. In schemes such as radial, spiral or concentric ring, the samples do 

not fall on this Cartesian grid15. Exponentially-biased random (on-grid) sampling was the first 

general NUS approach applied to multidimensional NMR16. By analogy with matched filter 

apodization17, biasing the sampling scheme toward shorter evolution times, using an exponential 

weighting to match the decay rate of the signal envelope, improves sensitivity. We refer to this as 

envelope-matched sampling (EMS). Generalizations to sine-modulated signals, where the signal 

is small at the beginning, and constant-time experiments, where the signal envelope does not 

decay, utilize the same rationale18,19. Distributions other than random have been employed; 

Poisson gap sampling20 avoids long gaps between samples while ensuring the samples are 

approximately randomly distributed.  

 It bears emphasizing that Nyquist condition does not apply to NUS: NUS invariably 

introduces sampling artifacts that are a form of aliasing21. To a good approximation, the positions 

and amplitudes of the sampling artifacts relative to true signals can be derived a priori from the 

sampling scheme. The point-spread function (PSF) is the spectrum of a real-valued sampling 

function K consisting of the value 1 for samples included in the NUS scheme and the value zero 

for samples not included in the scheme. For on-grid sampling, the PSF can be computed using 

the DFT. K has the property that when it multiplies a uniformly sampled data vector, element-
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wise, it results in a data vector in which the values not sampled in the NUS scheme have the 

value zero. The DFT of this zero-augmented NUS data (referred to as nonuniform DFT, 

nuDFT22) is equal to the convolution of the DFT spectrum of the uniformly sampled data with 

the PSF. Thus estimating the spectrum of an NUS data set is equivalent to deconvolving the PSF 

from the DFT spectrum of the zero-augmented data. While nuDFT provides useful insights into 

the nature of NUS artifacts, it is not a DFT of NUS data, nor is it a very good estimator of the 

spectrum of NUS data. 

The PSF typically consists of a main central component at zero frequency surrounded by 

smaller non-zero frequency components. Because the PSF enters into the DFT of the zero-

augmented data through convolution, each non-zero frequency component of the PSF gives rise 

to a sampling artifact for each signal component, with positions relative to the signal components 

that are the same as the relationship of the satellite peaks to the central component in the PSF. 

The amplitudes of the sampling artifacts are proportional to the amplitude of the signal 

component and the relative height of the satellite peaks in the PSF. Thus the largest sampling 

artifacts arise from the largest-amplitude components of the signal spectrum. The useful dynamic 

range (ratio between the magnitude of the largest and smallest detectable signal components) of 

the DFT spectrum of the zero-augmented data can be directly estimated from the PSF as the ratio 

between the amplitudes of the zero-frequency component and largest non-zero frequency 

component; this ratio is the peak-to-sidelobe ratio (PSR). The ability of a method of spectrum 

analysis to suppress sampling artifacts is ultimately limited by both the noise and the dynamic 

range of the signal.  

In addition to the PSR, another useful metric for sampling schemes is the sensitivity 

relative to uniform sampling. The relative sensitivity depends on the sampling scheme and the 
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nature of the signals, principally the decay rate (or 𝑅!∗) of the signal envelope; in contrast the 

PSR depends only on the sampling scheme. The relative sensitivity r(K) of a sampling scheme 

with sampling function K for a hypothetical signal can be estimated from the signal amplitude 

captured by a NUS scheme divided by that for uniform sampling having the same maximum 

evolution times tmax. For an exponentially decaying signal, the relative sensitivity of a scheme K 

spanning a two-dimensional grid with size n1 by n2 is approximately given by23 

𝑟 𝐊 =
!!"

!!
!!!

!!
!!! !!"

!!"
!!
!!!

!!
!!!

       (4) 

where the elements of p are given by 

𝑝!" = 𝑒𝑥𝑝 − !!! !! !
!"(!)

− !!! !! !
!"(!)

 ,   (5) 

R2(1) and R2(2) are the signal envelope decay rates, and SW(1) and SW(2) are the spectral widths 

in the two dimensions. A more accurate estimate would include the amount of noise captured by 

the NUS scheme, compared to uniform sampling. Recently systematic efforts to improve 

sensitivity using NUS have been reported12,24.  

The magnitudes of artifacts in NUS spectra depend on the distribution of sampled 

evolution times and the sampling coverage γ(K)=k/N, with k equal to the number of nonzero 

entries in K and N the total number of elements in K, which is the fraction of the evolution times 

from a uniform grid that are sampled by K. For the example above, γ(K) = !
!!×!!

. In general, 

the PSR increases with increasing γ, with only the zero-frequency element of the PSF having a 

non-zero value for γ=1. Because large values of the nonzero frequency components result from 

correlations among the sampled evolution times, K composed of random evolution times will 
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have the smallest sampling artifacts, and highest PSR, for a given coverage. For decaying 

sinusoids, a random sampling scheme will not have the highest sensitivity. A compromise 

between sensitivity and small artifacts leads to biased random sampling distributions, such as 

EMS17. PSFs, together with PSRs and relative sensitivity are shown in Fig. 3 for some 

representative sampling schemes, for sampling coverages of 0.3, 0.1, and 0.05. The importance 

of randomness in sampling schemes for suppressing sampling artifacts has been explored in 

depth21,25. 

The resolution of any sampling scheme along a given dimension, whether uniform or 

nonuniform, is largely determined by tmax. Using the DFT, resolving spectral features separated 

by the natural linewidth requires sampling at evolution times of πT2 or longer, but sampling 

beyond 1.26T2 results in diminishing returns on sensitivity 26. With MaxEnt, sampling to 1.26T2 

usually resolves spectral components separated by the natural linewidth, and thus represents a 

reasonable compromise between sensitivity and resolution for decaying signals. For experiments 

in which the evolution period is constant-time, the signal decay is determined mainly by field 

inhomogeneity (RF and B0), and so practical limits on tmax are imposed by the inhomogeneity or 

length of the constant time period, rather than T2.  

 The degree to which reducing sampling coverage via NUS can reduce experiment time, 

compared to uniform sampling, depends on a number of factors in addition to the randomness of 

the sampling scheme. Dynamic range of the signals and their amplitude relative to noise are key 

determinants. Because sampling artifacts enter through convolution, high dynamic range signals 

present challenges. Instead of being additive, the amplitudes of the largest sampling artifacts are 

determined by the amplitude of the strongest signal component. When the dynamic range is 
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large, these artifacts may exceed the amplitude of weak signal components. Thus more 

aggressive reductions in sampling coverage are feasible for high sensitivity experiments that 

have low dynamic range, and are more challenging for experiments with low sensitivity or high 

dynamic range. Dimensionality and sparsity (the fraction of values with amplitudes close to zero) 

of the spectrum have also been shown to play a role27,28. Increasing dimensionality helps in two 

ways, by decreasing the coherence of sampling and by increasing the sparsity of the spectrum. 

Sparsity helps because non-Fourier methods of spectrum analysis such as MaxEnt and l1-norm 

reconstruction work best for recovering sparse spectra28. As we show below, sampling coverage 

can conservatively be around 1/3 for each NUS dimension (e.g. roughly an order of magnitude 

reduction relative to uniform sampling for two indirect dimensions), even for challenging signals 

with high dynamic range, while more aggressive reductions have been used successfully for low 

dynamic range signals. 

Optimal sampling. As noted above in the discussion of sensitivity, optimizing sampling schemes 

can be challenging. Additional optimization can be realized by adjusting the sampling grid. 

Nonuniform sampling on an oversampled grid has been shown to shift artifacts to the edges of 

the spectrum, outside the desired spectral window, although the magnitude of sampling artifacts 

is not affected29. Because a sampling scheme that is optimal for one signal will not necessarily be 

optimal for a signal containing different frequency components, the design of efficient sampling 

schemes involves tradeoffs. Simply put, no single NUS scheme will be best suited for all 

experiments. Despite these challenges, prior knowledge about the signal can successfully inform 

the design of efficient sampling schemes. One approach is to use “greedy” or adaptive sampling, 

in which a sampling scheme is iteratively generated by asking what sample (corresponding to a 

specific combination of indirect evolution times), added to samples already measured, will most 
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improve some metric of performance. Suitable metrics can be derived from the PSF (to minimize 

sampling artifacts), the relative sensitivity, the ability to resolve expected resonances based on 

statistical knowledge of chemical shift distributions30, or from characteristics of the spectrum 

reconstruction prior to the next sample31,32. A caveat is that while prior knowledge can greatly 

improve sampling efficiency when it is accurate, highly-tailored sampling schemes can be less 

robust than more general sampling schemes when there are deviations from the underlying 

assumptions23 or high levels of experiment noise. 

NUS in action. One compelling reason for adopting NUS in multidimensional NMR 

experiments is dramatic savings in data collection time, without loss of resolution. The potential 

savings increase with magnetic field strength and with dimensionality. The time required for a 

multidimensional experiment is directly proportional to the number of evolution times sampled 

in the indirect dimensions, 

 𝑡!"# = (𝑡!"# + 𝑡!")×𝑛!×𝑘×2!!!      (6) 

where tacq is the time required to sample one FID, trc is the recycle time between transients, nt is 

the number of FIDs co-averaged, k is the number of samples in the indirect dimensions (for 

uniform sampling 𝑘 = 𝑛!!!!
!!!  with nj the number of samples in dimension j and the product is 

over the d-1 indirect dimensions of a d-dimensional experiment), and the factor of 2 per indirect 

dimension reflects quadrature detection. For a fairly typical uniformly sampled 3D experiment 

averaging two FIDs with 64 evolution times sampled in each of two indirect time dimensions, a 

tacq of 0.6 s, trc of 1.2 s, texp is 16.4 hr. Contrast this time to an experiment in which the maximum 

evolution time in the indirect dimensions correspond to the Rovnyak limit26 of 1.26T2 for 

optimizing sensitivity, or 𝜋T2
  for resolving components separated by the natural linewidth. 
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Typical 13C and 15N linewidths for a 20 kDa protein at 14.1 T (600 MHz for 1H) are 17.5 and 5.8 

Hz, respectively. The chemical shift dispersion for 13C and 15N is 10,500 and 2,100 Hz, 

respectively. With sampling intervals of 0.0952 ms and 0.476 ms required by the Nyquist 

condition, 241 samples in the 13C dimension and 145 samples in the 15N dimension would be 

required to sample uniformly to 1.26T2; 573 and 345 samples are needed to reach 𝜋T2.  texp for 

1.26T2 is 140 hr, or 795 hr for 𝜋T2. The total number of samples required for uniform sampling to 

either limit greatly exceeds the number typically acquired or the time devoted to data 

collection33. This means that higher dimensionality experiments that employ uniform sampling 

are usually sub-optimal both in sensitivity per unit time and in resolution.   

 In their seminal application of NUS and MaxEnt, Barna et al.34 demonstrated rather 

conservative coverage ranging from 0.25 to 0.125. More substantial reductions in sampling 

coverage have subsequently been reported for 3D and 4D experiments, with coverages well 

below 0.01 common35, and reaching 0.001636. NUS is not the only means for reducing the time 

required for multidimensional NMR experiments; in the SOFAST approach, the time between 

FIDs is reduced37. As SOFAST (and related methods) and NUS are complementary, they can be 

combined, achieving greater speedup than either approach alone29,38. 

  Rovnyak et al. exploited NUS to resolve separate resonances reflecting magnetically 

inequivalent 17O nuclei in the unit cell of hydroxyapatite crystals39. NUS has also been used to 

obtain high-resolution spectra for disordered proteins, which exhibit narrow spectral dispersion 

and hence crowded spectra38,40,41. The higher resolution afforded by NUS has also enabled novel 

assignment strategies for protein spectra that are not practical with uniform sampling35,42. For 

example 4D HCC(CO)NH-TOCSY spectra obtained using NUS for the three indirect dimensions 
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can be obtained in 1.5 days, a rather dramatic speedup, rendering high-resolution 4D experiments 

practical. The resulting resolution in the indirect dimensions is sufficient to capture unique 

carbon-proton connectivities, enabling a novel and efficient scheme for assigning protein side-

chain resonances. Similar approaches have also been reported for backbone resonance 

assignment employing 3D experiments 42,43. 

Examples illustrating important characteristics of NUS are shown in Figs. 4 and 5. Fig. 4 

depicts 2D cross-sections through the HNCO spectrum of ubiquitin; 1D cross-sections at the 

frequency indicated by the dashed line are shown above each contour plot. Panel A shows the 

spectrum obtained using conventional uniform sampling and DFT processing, requiring 34 hours 

to complete the experiment. Panel B shows the results using uniform sampling with a truncated 

data set requiring 25 minutes to collect; the reduction in resolution is severe. Panels C and D 

show the results from an experiment also using 25 minutes of measuring time, but using NUS 

instead of uniform sampling. In Panel C MaxEnt is used to compute the spectrum; in panel D, 

nuDFT was employed. Fig. 5 depicts contour plots for 2D projections of the HNCO spectrum for 

ubiquitin onto the 1H-13C plane. Panel A shows the projection obtained using the uniformly-

sampled data set of Fig4a. Panels B and C show the projections obtained from the truncated 

uniform and NUS data sets (corresponding to Figs 4B and 4C, respectively). Panel D shows the 

projection obtained nuDFT instead of MaxEnt (4C); 4D dramatically reveals the poverty of 

nuDFT, because the coherent sampling artifacts are accumulated by the projection. The nearly 

90-fold reduction in experiment time, with no loss of sensitivity or resolution, makes a 

convincing case for NUS and MaxEnt. 

Concluding remarks. The debate over optimal sampling schemes and the best reconstruction 

method is far from settled. A comprehensive critical comparison remains elusive, in part because 
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metrics of spectral quality (sensitivity, resolution) that are valid for linear methods, such as DFT, 

are frequently not suitable for non-Fourier methods. In addition to a lack of consensus on 

appropriate metrics, critical comparison is made difficult by the absence of a “shared task” 

comprised of a standard set of data. Nevertheless, a number of basic tenets of NUS have 

achieved broad consensus. It is abundantly clear that NUS approaches are essential for fully 

realizing the potential resolution afforded by modern high field magnets in the indirect 

dimensions of multidimensional experiments. Also widely appreciated is the importance of 

randomness in the design of sampling schemes in order to minimize sampling artifacts. Although 

fine details of the design of efficient sampling schemes remain an active area of exploration, it is 

understood that sampling more frequently when the signal envelope has greater amplitude 

improves sensitivity. The flexibility of NUS approaches for reducing measuring time, increasing 

resolution, or enhancing sensitivity, and in some cases two or more of these simultaneously, 

make NUS an indispensable tool for enhancing the utility and power of multidimensional NMR. 

These improvements will enable new and challenging applications of multidimensional NMR to 

larger, more complex, less abundant, and fleetingly stable systems. 
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Figure 1. Schematic diagram for MaxEnt. MaxEnt reconstruction begins with empirical data 
and a preliminary trial spectrum f (typically a blank spectrum). f is inverted (DFT-1) to create 
“mock” data (m) that is compared with the empirical data (d). An update to the trial spectrum is 
computed by searching along the gradients of the entropy and the constraint (the agreement 
between the empirical and mock data). The algorithm converges to the unique MaxEnt solution 
when the gradient of the objective function O = S-λC is zero and the gradients of S and C are 
antiparallel. 

Figure 2. Nonlinear transformation for analytic MaxEnt. In the special case that MaxEnt is 
used to compute the n-element spectrum from an n-element FID, the MaxEnt spectrum is 
equivalent to applying a monotonic nonlinear transformation to the DFT of the FID. The 
nonlinear transformation (A) depends on the value of λ; in the limit of large λ (the constraint 
weighted more heavily than the entropy), the transformation becomes nearly linear. For small λ, 
the transformation scales down small amplitude signals more than large amplitude signals (B).  

Figure 3. Examples of NUS schemes and PSFs. Examples of NUS sampling functions and 
PSFs in two nonuniformly sampled dimensions. Purely random sampling (third row) yields the 
smallest sampling artifacts for a given level of coverage (the central zero-frequency component 
is extremely narrow, making it hard to discern the red dot). Values for the relative sensitivity and 
PSR (both unitless) are displayed in the upper left and lower right, respectively, for each PSF. 

Figure 4. 3D HNCO spectra for Ubiquitin at 14.1 T (600 MHz for 1H). 13C/1H planar cross-
sections at a 1H frequency of 8.14 ppm. The one-dimensional cross-sections through the plots are 
of the 13C row at the weakest peak (15N frequency of 120.5 ppm), scaled so that the highest and 
lowest amplitudes are aligned. A) Using a full dataset, 6656 data samples, processed using LP 
extrapolation in each indirect dimension, shifted sine-bell apodization, and DFT; this data set 
required 36 hours of data collection B) using 100 uniformly-sampled data points (10 increments 
in each indirect dimension); this data requires 25 minutes of data collection. The spectrum was 
computed by LP extrapolation in each indirect dimension, apodization using a shifted sine-bell, 
and DFT. C) using NUS, with 100 random samples selected according to an exponentially 
weighted distribution, reconstructed using MaxEnt; this data also requires 25 minutes of data 
collection. D) Same as C), except using nuDFT instead of MaxEnt. The weak peak near the 
center of the 13C trace in A is the “tail” of a peak at a nearby 1H frequency; this disappears 
because of the narrower peaks in C. 

Figure 5. 3D HNCO spectra for Ubiquitin at 14.1 T (600 MHz for 1H). Projections of the full 
spectrum onto the 13C/1H plane. The one-dimensional cross-sections through the plots are 
expansions depicted by the rectangular boxes, scaled to align the maxima and minima. A) Using 
the full 6656 sample data set, processed using LP extrapolation in the indirect dimensions, 
shifted sine-bell apodization, and DFT (36 hours of data collection) B) using 400 uniformly-
sampled data points (20 increments in each indirect dimension, 25 minutes of data collection). 
The spectrum was computed by LP extrapolation in each indirect dimension, apodization using a 
shifted sine-bell, and DFT. C) using NUS, with 400 random samples selected according to an 
exponentially weighted distribution, reconstructed using MaxEnt; this data also requires 25 
minutes of data collection. D) Same as C), except using nuDFT instead of MaxEnt. 

 



 18 

 

 

 

AUTHOR INFORMATION 

Corresponding Author 

* University of Connecticut Health Center, Dept. of Molecular, Microbial, and Structural 

Biology, 263 Farmington Ave., Farmington, CT 06030-3305 USA  

Author Contributions 

The manuscript was written through contributions of all authors. All authors have given approval 

to the final version of the manuscript.  

ACKNOWLEDGMENT 

We are grateful to many generous colleagues for inspiration and fruitful collaboration: 

Haribabu Arthanari, David Donoho, Dominque Frueh, Vitaliy Gorbatyuk, Sven Hyberts, Glenn 

King, Tatyana Polenova, David Rovnyak, Peter Schmieder, Jim Sun, and Gerhard Wagner. 

Support from the US National Institutes of Health (RR-020125; GM-047467; GM-102366) and 

the Australian Research Council (FTl10100925) is gratefully acknowledged. 

Jeffrey Hoch is Professor of Molecular, Microbial, and Structural Biology and Director of the 

Gregory P. Mullen NMR Structural Biology Facility at the University of Connecticut Health 

Center. He obtained is Ph.D. from Harvard (1983) with Martin Karplus and Chris Dobson.  

 

Mark Maciejewski is Assistant Professor of Molecular, Microbial, and Structural Biology and 

Manager of the Gregory P. Mullen NMR Structural Biology Facility at the University of 



 19 

Connecticut Health Center. For the past 20 years he has utilized NMR for structural 

characterization of biomolecules and worked on NMR data processing. 

 

Mehdi Mobli is an Australian Research Council Future Fellow at the Centre for Advanced 

Imaging at the University of Queensland, Australia. His research interests lie in developing and 

applying advanced NMR methods to solving difficult biological problems, including the 

structure and function of membrane proteins as well as characterizing weak intermolecular 

interactions. 

 

Adam Schuyler was born in New York City, NY in 1978.  He received his BA with Honors from 

Williams College (2000) and his Ph.D. from Johns Hopkins University (2006).  He is presently a 

postdoctoral research fellow at the University of Connecticut Health Center.  His research 

interests include computational aspects of structural biology. 

 

Alan Stern is a Staff Computational Scientist at Harvard's Rowland Institute.  He has worked 

on NMR data processing for over 25 years.   



 20 

REFERENCES 
 
 (1) Ernst, R. R.; Anderson, W. A. Application of Fourier Transform Spectroscopy to 
Magnetic Resonance. Rev. Sci. Instrum. 1966, 37, 93-102. 
 (2) Jeener, J.: Oral Presentation, Ampere International Summer School, Basko Polje 
Yugoslavia. 1971. 
 (3) Hoch, J. C.; Stern, A. S.: NMR Data Processing; Wiley-Liss: New York, 1996. 
 (4) Mobli, M.; Hoch, J. C.; King, G. F.: Fast Acquisition Methods in 
Multidimensional NMR. In Advances in Biomedical spectroscopy; Dingley, A. J., Pascal, S. M., 
Eds.; IOS Press: Amsterdam, 2011. 
 (5) Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 
1948, 27, 379-423. 
 (6) Skilling, J.; Bryan, R. Maximum entropy image reconstruction: general algorithm. 
Mon. Not. R. Astron. Soc. 1984, 211, 111-124. 
 (7) Schmieder, P.; Stern, A. S.; Wagner, G.; Hoch, J. C. Quantification of maximum-
entropy spectrum reconstructions. J Magn Reson 1997, 125, 332-339. 
 (8) Mobli, M.; Maciejewski, M. W.; Gryk, M. R.; Hoch, J. C. An automated tool for 
maximum entropy reconstruction of biomolecular NMR spectra. Nat Methods 2007, 4, 467-468. 
 (9) Donoho, D. L.; Johnstone, I. M.; Stern, A. S.; Hoch, J. C. Does the maximum 
entropy method improve sensitivity? Proc Natl Acad Sci U S A 1990, 87, 5066-5068. 
 (10) Jones, J. A.; Hore, P. J. The Maximum-Entropy Method - Appearance and 
Reality. J. Magn. Reson. 1991, 92, 363-376. 
 (11) Jones, J. A.; Hore, P. J. The Maximum-Entropy Method and Fourier 
Transformation Compared. J. Magn. Reson. 1991, 92, 276-292. 
 (12) Paramasivam, S.; Suiter, C. L.; Hou, G.; Sun, S.; Palmer, M.; Hoch, J. C.; 
Rovnyak, D.; Polenova, T. Enhanced sensitivity by nonuniform sampling enables 
multidimensional MAS NMR spectroscopy of protein assemblies. J Phys Chem B 2012, 116, 
7416-7427. 
 (13) Hyberts, S. G.; Heffron, G. J.; Tarragona, N. G.; Solanky, K.; Edmonds, K. A.; 
Luithardt, H.; Fejzo, J.; Chorev, M.; Aktas, H.; Colson, K.; Falchuk, K. H.; Halperin, J. A.; 
Wagner, G. Ultrahigh-resolution (1)H-(13)C HSQC spectra of metabolite mixtures using 
nonlinear sampling and forward maximum entropy reconstruction. J Am Chem Soc 2007, 129, 
5108-5116. 
 (14) Schmieder, P.; Stern, A. S.; Wagner, G.; Hoch, J. C. Quantification of Maximum 
Entropy Reconstructions. J. Magn. Reson. 1997, 125, 332-339. 
 (15) Maciejewski, M. W.; Mobli, M.; Schuyler, A. D.; Stern, A. S.; Hoch, J. C.: Data 
Sampling in Multidimensional NMR: Fundamentals and Strategies. In Top Curr Chem; Billeter, 
M., Orekhov, V., Eds.; Springer: Berlin, 2012; pp 1-29. 
 (16) Barna, J. C. J.; Laue, E. D.; Mayger, M. R.; Skilling, J.; Worrall, S. J. P. 
Exponential sampling: an alternative method for sampling in two dimensional NMR 
experiments. J. Magn. Reson. 1987, 73, 69. 
 (17) Ernst, R. R. Sensitivity Enhancement in Magnetic Resonance. Adv. Magn. Reson. 
1966, 2, 1-135. 
 (18) Schmieder, P.; Stern, A. S.; Wagner, G.; Hoch, J. C. Application of nonlinear 
sampling schemes to COSY-type spectra. J. Biomol. NMR 1993, 3, 569-576. 



 21 

 (19) Schmieder, P.; Stern, A. S.; Wagner, G.; Hoch, J. C. Improved resolution in 
triple-resonance spectra by nonlinear sampling in the constant-time domain. J. Biomol. NMR 
1994, 4, 483-490. 
 (20) Hyberts, S. G.; Takeuchi, K.; Wagner, G. Poisson-gap sampling and 
forward maximum entropy reconstruction for enhancing the resolution and sensitivity of 
protein NMR data. J Am Chem Soc 2010, 132, 2145-2147. 
 (21) Bretthorst, G. L. Nonuniform sampling: Bandwidth and Aliasing. Concepts Magn. 
Reson. 2008, 32A, 417-435. 
 (22) Kazimierczuk, K.; Kozminski, W.; Zhukov, I. Two-dimensional Fourier 
transform of arbitrarily sampled NMR data sets. J Magn Reson 2006, 179, 323-328. 
 (23) Schuyler, A. D.; Maciejewski, M. W.; Arthanari, H.; Hoch, J. C. Knowledge-
based nonuniform sampling in multidimensional NMR. J Biomol NMR 2011, 50, 247-262. 
 (24) Hyberts, S. G.; Robson, S. A.; Wagner, G. Exploring signal-to-noise ratio and 
sensitivity in non-uniformly sampled multi-dimensional NMR spectra. J Biomol NMR 2013, 55, 
167-178. 
 (25) Hoch, J. C.; Maciejewski, M. W.; Filipovic, B. Randomization improves sparse 
sampling in multidimensional NMR. J Magn Reson 2008, 193, 317-320. 
 (26) Rovnyak, D.; Hoch, J. C.; Stern, A. S.; Wagner, G. Resolution and sensitivity of 
high field nuclear magnetic resonance spectroscopy. J Biomol NMR 2004, 30, 1-10. 
 (27) Lustig, M.; Donoho, D.; Pauly, J. M. Sparse MRI: The application of compressed 
sensing for rapid MR imaging. Magn Reson Med 2007, 58, 1182-1195. 
 (28) Donoho, D. L.; Johnstone, I. M.; Stern, A. S.; Hoch, J. C. Maximum Entropy and 
the Nearly Black Object (with discussion). J Roy Stat Soc B 1992, 54, 41-81. 
 (29) Maciejewski, M. W.; Qui, H. Z.; Rujan, I.; Mobli, M.; Hoch, J. C. Nonuniform 
sampling and spectral aliasing. J Magn Reson 2009. 
 (30) Eghbalnia, H. R.; Bahrami, A.; Tonelli, M.; Hallenga, K.; Markley, J. L. High-
resolution iterative frequency identification for NMR as a general strategy for multidimensional 
data collection. J Am Chem Soc 2005, 127, 12528-12536. 
 (31) Wong, L. E.; Masse, J. E.; Jaravine, V.; Orekhov, V.; Pervushin, K. Automatic 
assignment of protein backbone resonances by direct spectrum inspection in targeted acquisition 
of NMR data. J Biomol NMR 2008, 42, 77-86. 
 (32) Cornilescu, G.; Bahrami, A.; Tonelli, M.; Markley, J. L.; Eghbalnia, H. R. HIFI-
C: a robust and fast method for determining NMR couplings from adaptive 3D to 2D projections. 
J Biomol NMR 2007, 38, 341-351. 
 (33) Hyberts, S. G.; Arthanari, H.; Wagner, G. Applications of non-uniform sampling 
and processing. Top Curr Chem 2012, 316, 125-148. 
 (34) Barna, J. C. J.; Laue, E. D.; Mayger, M. R.; Skilling, J.; Worrall, S. J. P. 
Exponential sampling, an alternative method for sampling in two-dimensional NMR 
experiments. J Magn Reson 1987, 73, 69-77. 
 (35) Mobli, M.; Stern, A. S.; Bermel, W.; King, G. F.; Hoch, J. C. A non-uniformly 
sampled 4D HCC(CO)NH-TOCSY experiment processed using maximum entropy for rapid 
protein sidechain assignment. J Magn Reson 2010, 204, 160-164. 
 (36) Stanek, J.; Augustyniak, R.; Koźmiński, W. Suppression of sampling artefacts in 
high-resolution four-dimensional NMR spectra using signal separation algorithm. J Magn Reson 
2012, 214, 91-102. 



 22 

 (37) Schanda, P.; Kupce, E.; Brutscher, B. SOFAST-HMQC experiments for recording 
two-dimensional heteronuclear correlation spectra of proteins within a few seconds. J Biomol 
NMR 2005, 33, 199-211. 
 (38) Marion, D. Combining methods for speeding up multi-dimensional acquisition. 
Sparse sampling and fast pulsing methods for unfolded proteins. J Magn Reson 2010, 206, 81-
87. 
 (39) Rovnyak, D.; Filip, C.; Itin, B.; Stern, A. S.; Wagner, G.; Griffin, R. G.; Hoch, J. 
C. Multiple-quantum magic-angle spinning spectroscopy using nonlinear sampling. J Magn 
Reson 2003, 161, 43-55. 
 (40) Pannetier, N.; Houben, K.; Blanchard, L.; Marion, D. Optimized 3D-NMR 
sampling for resonance assignment of partially unfolded proteins. J Magn Reson 2007, 186, 142-
149. 
 (41) Motáčková, V.; Nováček, J.; Zawadzka-Kazimierczuk, A.; Kazimierczuk, K.; 
Zídek, L.; Sanderová, H.; Krásný, L.; Koźmiński, W.; Sklenář, V. Strategy for complete NMR 
assignment of disordered proteins with highly repetitive sequences based on resolution-enhanced 
5D experiments. J Biomol NMR 2010, 48, 169-177. 
 (42) Sun, Z. Y.; Frueh, D. P.; Selenko, P.; Hoch, J. C.; Wagner, G. Fast assignment of 
15N-HSQC peaks using high-resolution 3D HNcocaNH experiments with non-uniform 
sampling. J Biomol NMR 2005, 33, 43-50. 
 (43) Frueh, D. P.; Sun, Z. Y.; Vosburg, D. A.; Walsh, C. T.; Hoch, J. C.; Wagner, G. 
Non-uniformly sampled double-TROSY hNcaNH experiments for NMR sequential assignments 
of large proteins. J Am Chem Soc 2006, 128, 5757-5763. 

 

 


