289 research outputs found

    DATA:SEARCH'18 - Searching data on the web

    Get PDF

    Mixed Information Flow for Cross-domain Sequential Recommendations

    Get PDF
    Cross-domain sequential recommendation is the task of predict the next item that the user is most likely to interact with based on past sequential behavior from multiple domains. One of the key challenges in cross-domain sequential recommendation is to grasp and transfer the flow of information from multiple domains so as to promote recommendations in all domains. Previous studies have investigated the flow of behavioral information by exploring the connection between items from different domains. The flow of knowledge (i.e., the connection between knowledge from different domains) has so far been neglected. In this paper, we propose a mixed information flow network for cross-domain sequential recommendation to consider both the flow of behavioral information and the flow of knowledge by incorporating a behavior transfer unit and a knowledge transfer unit. The proposed mixed information flow network is able to decide when cross-domain information should be used and, if so, which cross-domain information should be used to enrich the sequence representation according to users' current preferences. Extensive experiments conducted on four e-commerce datasets demonstrate that mixed information flow network is able to further improve recommendation performance in different domains by modeling mixed information flow.Comment: 26 pages, 6 figures, TKDD journal, 7 co-author

    Cornetto: A Combinatorial Lexical Semantic Database for Dutch

    Get PDF
    One of the goals of the STEVIN programme is the realisation of a digital infrastructure that will enforce the position of the Dutch language in the modern information and communication technology.A semantic database makes it possible to go from words to concepts and consequently, to develop technologies that access and use knowledge rather than textual representations

    Completeness in hybrid type theory

    Get PDF
    We show that basic hybridization (adding nominals and @ operators) makes it possible to give straightforward Henkin-style completeness proofs even when the modal logic being hybridized is higher-order. The key ideas are to add nominals as expressions of type t, and to extend to arbitrary types the way we interpret @i in propositional and first-order hybrid logic. This means: interpret @iαa, where αa is an expression of any type a, as an expression of type a that rigidly returns the value that αa receives at the i-world. The axiomatization and completeness proofs are generalizations of those found in propositional and first-order hybrid logic, and (as is usual in hybrid logic) we automatically obtain a wide range of completeness results for stronger logics and languages. Our approach is deliberately low-tech. We don’t, for example, make use of Montague’s intensional type s, or Fitting-style intensional models; we build, as simply as we can, hybrid logic over Henkin’s logic.submittedVersionFil: Areces, Carlos Eduardo. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Blackburn, Patrick. University of Roskilde. Centre for Culture and Identity. Department of Philosophy and Science Studies; Dinamarca.Fil: Huertas, Antonia. Universitat Oberta de Catalunya; España.Fil: Manzano, María. Universidad de Salamanca; España.Ciencias de la Computació

    Cell proliferation within small intestinal crypts is the principal driving force for cell migration on villi

    Get PDF
    The functional integrity of the intestinal epithelial barrier relies on tight coordination of cell proliferation and migration, with failure to regulate these processes resulting in disease. It is not known whether cell proliferation is sufficient to drive epithelial cell migration during homoeostatic turnover of the epithelium. Nor is it known precisely how villus cell migration is affected when proliferation is perturbed. Some reports suggest that proliferation and migration may not be related while other studies support a direct relationship. We used established cell-tracking methods based on thymine analog cell labeling and developed tailored mathematical models to quantify cell proliferation and migration under normal conditions and when proliferation is reduced and when it is temporarily halted. We found that epithelial cell migration velocities along the villi are coupled to cell proliferation rates within the crypts in all conditions. Furthermore, halting and resuming proliferation results in the synchronized response of cell migration on the villi. We conclude that cell proliferation within the crypt is the primary force that drives cell migration along the villus. This methodology can be applied to interrogate intestinal epithelial dynamics and characterize situations in which processes involved in cell turnover become uncoupled, including pharmacological treatments and disease models
    corecore