4,631 research outputs found
Haze in the Klang Valley of Malaysia
Continuous measurements of dry aerosol light scattering (Bsp) were made at two sites in the Klang Valley of Malaysia between December 1998 and December 2000. In addition 24-h PM2.5 samples were collected on a one-day-in-six cycle and the chemical composition of the aerosol was determined. Periods of excessive haze were defined as 24-h average Bsp values greater than 150 Mm-1 and these occurred on a number of occasions, between May and September 1999, during May 2000, and between July and September 2000. The evidence for smoke being a significant contributor to aerosol during periods of excessive haze is discussed and includes features of the aerosol chemistry, the diurnal cycle of Bsp, and the coincidence of forest fires on Sumatra during the southwest (SW) monsoon period, as well as transport modelling for one week of the southwest Monsoon of 2000. The study highlights that whilst transboundary smoke is a major contributor to poor visibility in the Klang Valley, smoke from fires on Peninsular Malaysia is also a contributor, and at all times, the domestic source of secondary particle production is present
Sub-Nyquist Field Trial Using Time Frequency Packed DP-QPSK Super-Channel Within Fixed ITU-T Grid
Sub-Nyquist time frequency packing technique was demonstrated for the first
time in a super channel field trial transmission over long-haul distances. The
technique allows a limited spectral occupancy even with low order modulation
formats. The transmission was successfully performed on a deployed Australian
link between Sydney and Melbourne which included 995 km of uncompensated SMF
with coexistent traffic. 40 and 100 Gb/s co-propagating channels were
transmitted together with the super-channel in a 50 GHz ITU-T grid without
additional penalty. The super-channel consisted of eight sub-channels with
low-level modulation format, i.e. DP-QPSK, guaranteeing better OSNR robustness
and reduced complexity with respect to higher order formats. At the receiver
side, coherent detection was used together with iterative maximum-a-posteriori
(MAP) detection and decoding. A 975 Gb/s DP-QPSK super-channel was successfully
transmitted between Sydney and Melbourne within four 50GHz WSS channels (200
GHz). A maximum potential SE of 5.58 bit/s/Hz was achieved with an OSNR=15.8
dB, comparable to the OSNR of the installed 100 Gb/s channels. The system
reliability was proven through long term measurements. In addition, by closing
the link in a loop back configuration, a potential SE*d product of 9254
bit/s/Hz*km was achieved
Network governance for large‐scale natural resource conservation and the challenge of capture
Large‐scale natural resource conservation initiatives are increasingly adopting a network governance framework to respond to the ecological, social, and political challenges of contemporary environmental governance. A network approach offers new modes of management that allow resource managers and others to transcend a single institution, organization, resource, or landscape and engage in conservation that is multi‐species and multi‐jurisdictional. However, there are challenges to network governance in large‐scale conservation efforts, which we address by focusing on how special interests can capture networks and shape the goals, objectives, and outcomes of initiatives. The term “network capture” is used here to describe an array of strategies that direct the processes and outcomes of large‐scale initiatives in ways that advance a group\u27s positions, concerns, or economic interests. We outline how new stakeholders emerge from these management processes, and how the ease of information sharing can blur stakeholder positions and lead to competing knowledge claims. We conclude by reasserting the benefits of network governance while acknowledging the unique challenges that networks present
Repeat-Until-Success quantum computing using stationary and flying qubits
We introduce an architecture for robust and scalable quantum computation
using both stationary qubits (e.g. single photon sources made out of trapped
atoms, molecules, ions, quantum dots, or defect centers in solids) and flying
qubits (e.g. photons). Our scheme solves some of the most pressing problems in
existing non-hybrid proposals, which include the difficulty of scaling
conventional stationary qubit approaches, and the lack of practical means for
storing single photons in linear optics setups. We combine elements of two
previous proposals for distributed quantum computing, namely the efficient
photon-loss tolerant build up of cluster states by Barrett and Kok [Phys. Rev.
A 71, 060310(R) (2005)] with the idea of Repeat-Until-Success (RUS) quantum
computing by Lim et al. [Phys. Rev. Lett. 95, 030505 (2005)]. This idea can be
used to perform eventually deterministic two-qubit logic gates on spatially
separated stationary qubits via photon pair measurements. Under non-ideal
conditions, where photon loss is a possibility, the resulting gates can still
be used to build graph states for one-way quantum computing. In this paper, we
describe the RUS method, present possible experimental realizations, and
analyse the generation of graph states.Comment: 14 pages, 7 figures, minor changes, references and a discussion on
the effect of photon dark counts adde
Robotic simulators for tissue examination training with multimodal sensory feedback
Tissue examination by hand remains an essential technique in clinical practice. The effective application depends on skills in sensorimotor coordination, mainly involving haptic, visual, and auditory feedback. The skills clinicians have to learn can be as subtle as regulating finger pressure with breathing, choosing palpation action, monitoring involuntary facial and vocal expressions in response to palpation, and using pain expressions both as a source of information and as a constraint on physical examination. Patient simulators can provide a safe learning platform to novice physicians before trying real patients. This paper reviews state-of-the-art medical simulators for the training for the first time with a consideration of providing multimodal feedback to learn as many manual examination techniques as possible. The study summarizes current advances in tissue examination training devices simulating different medical conditions and providing different types of feedback modalities. Opportunities with the development of pain expression, tissue modeling, actuation, and sensing are also analyzed to support the future design of effective tissue examination simulators
A compact and reconfigurable silicon nitride time-bin entanglement circuit
Photonic chip based time-bin entanglement has attracted significant attention
because of its potential for quantum communication and computation. Useful
time-bin entanglement systems must be able to generate, manipulate and analyze
entangled photons on a photonic chip for stable, scalable and reconfigurable
operation. Here we report the first time-bin entanglement photonic chip that
integrates time-bin generation, wavelength demultiplexing and entanglement
analysis. A two-photon interference fringe with an 88.4% visibility is measured
(without subtracting any noise), indicating the high performance of the chip.
Our approach, based on a silicon nitride photonic circuit, which combines the
low-loss characteristic of silica and tight integration features of silicon,
paves the way for scalable real-world quantum information processors.Comment: 4 pages, 5 figure
Aortopulmonary Window with Interrupted Aortic Arch and Pulmonary Artery Sling: Diagnosis by Echocardiography and Magnetic Resonance Imaging: Case Report and Literature Review
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71570/1/j.1540-8175.1999.tb00796.x.pd
Cost-benefit analysis for commissioning decisions in GEO600
Gravitational wave interferometers are complex instruments, requiring years
of commissioning to achieve the required sensitivities for the detection of
gravitational waves, of order 10^-21 in dimensionless detector strain, in the
tens of Hz to several kHz frequency band. Investigations carried out by the
GEO600 detector characterisation group have shown that detector
characterisation techniques are useful when planning for commissioning work. At
the time of writing, GEO600 is the only large scale laser interferometer
currently in operation running with a high duty factor, 70%, limited chiefly by
the time spent commissioning the detector. The number of observable
gravitational wave sources scales as the product of the volume of space to
which the detector is sensitive and the observation time, so the goal of
commissioning is to improve the detector sensitivity with the least possible
detector down time. We demonstrate a method for increasing the number of
sources observable by such a detector, by assessing the severity of
non-astrophysical noise contaminations to efficiently guide commissioning. This
method will be particularly useful in the early stages and during the initial
science runs of the aLIGO and adVirgo detectors, as they are brought up to
design performance.Comment: 17 pages, 17 figures, 2 table
Treatment of classical Hodgkin lymphoma in young adults aged 18-30 years with a modified paediatric Hodgkin lymphoma protocol. Results of a multicentre phase II clinical trial (CRUK/08/012)
This phase II trial was designed to determine the safety and efficacy of a modified paediatric risk-stratified protocol in young adults (18-30 years) with classical Hodgkin Lymphoma. The primary end-point was neurotoxicity rate. The incidence of grade 3 neurotoxicity was 11% (80% CI, 5-19%); a true rate of neuropathy of >15% cannot be excluded. Neuropathy and associated deterioration in quality of life was largely reversible. The overall response rate was 100% with 40% complete remission (CR) rate. Twelve months disease-free survival (DFS) was 91%. We demonstrate that a risk-stratified paediatric combined modality treatment approach can be delivered to young adults without significant irreversible neuropathy
- …