6,448 research outputs found

    Long-term radial-velocity variations of the Sun as a star: The HARPS view

    Get PDF
    Stellar radial velocities play a fundamental role in the discovery of extrasolar planets and the measurement of their physical parameters as well as in the study of stellar physical properties. We investigate the impact of the solar activity on the radial velocity of the Sun using the HARPS spectrograph to obtain measurements that can be directly compared with those acquired in the extrasolar planet search programs. We use the Moon, the Galilean satellites, and several asteroids as reflectors to measure the radial velocity of the Sun as a star and correlate it with disc-integrated chromospheric and magnetic indexes of solar activity that are similar to stellar activity indexes. We discuss in detail the systematic effects that affect our measurements and the methods to account for them. We find that the radial velocity of the Sun as a star is positively correlated with the level of its chromospheric activity at about 95 percent significance level. The amplitude of the long-term variation measured in the 2006-2014 period is 4.98 \pm 1.44 m/s, in good agreement with model predictions. The standard deviation of the residuals obtained by subtracting a linear best fit is 2.82 m/s and is due to the rotation of the reflecting bodies and the intrinsic variability of the Sun on timescales shorter than the activity cycle. A correlation with a lower significance is detected between the radial velocity and the mean absolute value of the line-of-sight photospheric magnetic field flux density. Our results confirm similar correlations found in other late-type main-sequence stars and provide support to the predictions of radial velocity variations induced by stellar activity based on current models.Comment: 11 pages, 7 figures, 2 tables, 1 Appendix; accepted by Astronomy and Astrophysic

    Daily variability of Ceres' Albedo detected by means of radial velocities changes of the reflected sunlight

    Get PDF
    Bright features have been recently discovered by Dawn on Ceres, which extend previous photometric and Space Telescope observations. These features should produce distortions of the line profiles of the reflected solar spectrum and therefore an apparent radial velocity variation modulated by the rotation of the dwarf planet. Here we report on two sequences of observations of Ceres performed in the nights of 31 July, 26-27 August 2015 by means of the high-precision HARPS spectrograph at the 3.6-m La Silla ESO telescope. The observations revealed a quite complex behaviour which likely combines a radial velocity modulation due to the rotation with an amplitude of approx +/- 6 m/s and an unexpected diurnal effect. The latter changes imply changes in the albedo of Occator's bright features due to the blaze produced by the exposure to solar radiation. The short-term variability of Ceres' albedo is on timescales ranging from hours to months and can both be confirmed and followed by means of dedicated radial velocity observations.Comment: 5 pag, 1fig, two tables, MNRAS Letters 201

    Oxidation of manganese in an ancient aquifer, Kimberley formation, Gale crater, Mars

    Get PDF
    The Curiosity rover observed high Mn abundances (>25 wt % MnO) in fracture‐filling materials that crosscut sandstones in the Kimberley region of Gale crater, Mars. The correlation between Mn and trace metal abundances plus the lack of correlation between Mn and elements such as S, Cl, and C, reveals that these deposits are Mn oxides rather than evaporites or other salts. On Earth, environments that concentrate Mn and deposit Mn minerals require water and highly oxidizing conditions; hence, these findings suggest that similar processes occurred on Mars. Based on the strong association between Mn‐oxide deposition and evolving atmospheric dioxygen levels on Earth, the presence of these Mn phases on Mars suggests that there was more abundant molecular oxygen within the atmosphere and some groundwaters of ancient Mars than in the present day

    Modeling storm water control operated by green roofs at the urban catchment scale

    Get PDF
    The urban catchment of Colle Ometti, in the town of Genoa, Italy, where storm water runoff is monitored for both quantity and quality, was selected as a test site for the hydrologic modelling of greening scenarios. Although no green roof installations are now present in the area, this study modelled \u2013 using extensive green roof details \u2013 the hydrologic effects of three hypothetical roof greenin scenarios at the catchment scale (conversion of 10%, 20%, and 100% impervious to green roofs). The modelling of green roof performances was undertaken using the EPA SWMM and was calibrated and validated on a small size green roof system completed in September 2007 in the laboratory of the Department of Civil, Environmental and Architectural Engineering (DICAT \u2013 University of Genoa). Precipitation scenarios were developed based on eighteen years of high resolution (one minute) rain gauge data in Genoa (1990-2007).Hydrologic modelling demonstrated that widespread green roof implementation can significantly reduce peak runoff rates and the lag time (7min and 15 min) runoff volume (detention effect) while after introducing the drying process operated by evapo-traspiration during the inter-event period the runoff volume reduction at the event scale (retention effect) can also be appreciated

    Searching for star-planet magnetic interaction in CoRoT observations

    Full text link
    Close-in massive planets interact with their host stars through tidal and magnetic mechanisms. In this paper, we review circumstantial evidence for star-planet interaction as revealed by the photospheric magnetic activity in some of the CoRoT planet-hosting stars, notably CoRoT-2, CoRoT-4, and CoRoT-6. The phenomena are discussed in the general framework of activity-induced features in stars accompanied by hot Jupiters. The theoretical mechanisms proposed to explain the activity enhancements possibly related with hot Jupiter are also briefly reviewed with an emphasis on the possible effects at photospheric level. The unique advantages of CoRoT and Kepler observations to test these models are pointed out.Comment: Invited review paper accepted by Astrophysics and Space Science, 13 pages, 5 figure

    Magnetic field strengths of hot Jupiters from signals of star-planet interactions

    Full text link
    Evidence of star-planet interactions in the form of planet-modulated chromospheric emission has been noted for a number of hot Jupiters. Magnetic star-planet interactions involve the release of energy stored in the stellar and planetary magnetic fields. These signals thus offer indirect detections of exoplanetary magnetic fields. Here we report the derivation of the magnetic field strengths of four hot Jupiter systems using the power observed in Ca II K emission modulated by magnetic star-planet interactions. By approximating the fractional energy released in the Ca II K line we find that the surface magnetic field values for the hot Jupiters in our sample range from 20 G to 120 G, ~10-100 times larger than the values predicted by dynamo scaling laws for planets with rotation periods of ~2 - 4 days. On the other hand, these value are in agreement with scaling laws relating the magnetic field strength to the internal heat flux in giant planets. Large planetary magnetic field strengths may produce observable electron-cyclotron maser radio emission by preventing the maser from being quenched by the planet's ionosphere. Intensive radio monitoring of hot Jupiter systems will help confirm these field values and inform on the generation mechanism of magnetic fields in this important class of exoplanets.Comment: Published 7/22/2019 in Nature Astronomy: https://www.nature.com/articles/s41550-019-0840-x. 20 pages, 3 figures, 3 tables, 3 supplementary figures, 1 supplementary tabl

    A reference architecture for federating IoT infrastructures supporting semantic interoperability

    Get PDF
    : The Internet-of-Things (IoT) is unanimously identified as one of the main pillars of future smart scenarios. However, despite the growing number of IoT deployments, the majority of IoT applications tend to be self-contained, thereby forming vertical silos. Indeed, the ability to combine and synthesize data streams and services from diverse IoT platforms and testbeds, holds the promise to increase the potential of smart applications in terms of size, scope and targeted business context. This paper describes the system architecture for the FIESTA-IoT platform, whose main aim is to federate a large number of testbeds across the planet, in order to offer experimenters the unique experience of dealing with a large number of semantically interoperable data sources. This system architecture was developed by following the Architectural Reference Model (ARM) methodology promoted by the IoT-A project (FP7 “light house” project on Architecture for the Internet of Things). Through this process, the FIESTAIoT architecture is composed of a set of Views that deals with a “logical” functional decomposition (Functional View, FV) and data structuring and annotation, data flows and inter-functional component interactions (Information View, IV)

    Atrial fibrillation in Mediterranean spotted fever

    Get PDF
    Mediterranean spotted fever (MSF) is a tick-borne acute febrile disease caused by Rickettsia conorii and characterized by fever, maculo-papular rash and a black eschar at the site of the tick bite ('tache noir'). We describe the case of a 58-year-old man affected by MSF who developed atrial fibrillation. The patient presented himself to the hospital after 7 days of fever, malaise and severe headache. Cardiac auscultation revealed a chaotic heart rhythm and an electrocardiogram confirmed atrial fibrillation with a fast ventricular response. Diagnosis of MSF was made after the appearance of a maculo-papular skin rash, and treatment with oral doxycycline was started. An immunofluorescence antibody test confirmed R. conorii infection. The patient recovered after 7 days of treatment. Cardiac arrhythmia is a rare complication of MSF. Inflammation may play a role in the pathogenesis of atrial fibrillation. R. conorii is an intracellular bacterium which could trigger atrial fibrillation. Our patient was previously healthy and had no reported history of cardiac disease. This suggests that heart function should be monitored in MSF patients even in the absence of underlying risk factors

    Mixing by overshooting and rotation in intermediate-mass stars

    Get PDF
    Double-line eclipsing binaries (DLEBs) have been recently used to constrain the amount of central mixing as a function of stellarmass, with contrasting results. In this work, we reanalyse the DLEB sample by Claret & Torres, using a Bayesian method and new PARSEC tracks that account for both convective core overshooting and rotational mixing. Using overshooting alone, we obtain that, for masses larger than about 1.9Mo, the distribution of the overshooting parameter, e\uf6v, has a wide dispersion between 0.3 and 0.8, with essentially no values below e\uf6v = 0.3 and 0.4. While the lower limit supports a mild convective overshooting efficiency, the large dispersion derived is difficult to explain in the framework of current models of that process, which leave little room for large randomness.We suggest that a simple interpretation of our results can be rotational mixing: Different initial rotational velocities, in addition to a fixed amount of overshooting, could reproduce the high dispersion derived for intermediatemass stars. After a reanalysis of the data, we find good agreement with models computed with a fixed overshooting parameter, \u3b4ov = 0.4, and initial rotational rates, \uf9, uniformly distributed in a wide range between 0 and 0.8 times the break-up value, at varying initial mass. We also find that our best-fitting models for the components of \u3b1 Aurigae and TZ Fornacis agree with their observed rotational velocities, thus providing independent support to our hypothesis.We conclude that a constant efficiency of overshooting in concurrence with a star-to-star variation in the rotational mixing might be crucial in the interpretation of such data

    Models of Star-Planet Magnetic Interaction

    Full text link
    Magnetic interactions between a planet and its environment are known to lead to phenomena such as aurorae and shocks in the solar system. The large number of close-in exoplanets that were discovered triggered a renewed interest in magnetic interactions in star-planet systems. Multiple other magnetic effects were then unveiled, such as planet inflation or heating, planet migration, planetary material escape, and even modification of the host star properties. We review here the recent efforts in modelling and understanding magnetic interactions between stars and planets in the context of compact systems. We first provide simple estimates of the effects of magnetic interactions and then detail analytical and numerical models for different representative scenarii. We finally lay out a series of future developments that are needed today to better understand and constrain these fascinating interactions.Comment: 23 pages, 10 figures, accepted as a chapter in the Handbook of Exoplanet
    • 

    corecore