295 research outputs found

    Two-electron quantum dots as scalable qubits

    Full text link
    We show that two electrons confined in a square semiconductor quantum dot have two isolated low-lying energy eigenstates, which have the potential to form the basis of scalable computing elements (qubits). Initialisation, one-qubit and two-qubit universal gates, and readout are performed using electrostatic gates and magnetic fields. Two-qubit transformations are performed via the Coulomb interaction between electrons on adjacent dots. Choice of initial states and subsequent asymmetric tuning of the tunnelling energy parameters on adjacent dots control the effect of this interaction.Comment: Revised version, accepted by PR

    Low Temperature-Dependent Salmonid Alphavirus Glycoprotein Processing and Recombinant Virus-Like Particle Formation

    Get PDF
    Pancreas disease (PD) and sleeping disease (SD) are important viral scourges in aquaculture of Atlantic salmon and rainbow trout. The etiological agent of PD and SD is salmonid alphavirus (SAV), an unusual member of the Togaviridae (genus Alphavirus). SAV replicates at lower temperatures in fish. Outbreaks of SAV are associated with large economic losses of ∼17 to 50 million $/year. Current control strategies rely on vaccination with inactivated virus formulations that are cumbersome to obtain and have intrinsic safety risks. In this research we were able to obtain non-infectious virus-like particles (VLPs) of SAV via expression of recombinant baculoviruses encoding SAV capsid protein and two major immunodominant viral glycoproteins, E1 and E2 in Spodoptera frugiperda Sf9 insect cells. However, this was only achieved when a temperature shift from 27°C to lower temperatures was applied. At 27°C, precursor E2 (PE2) was misfolded and not processed by host furin into mature E2. Hence, E2 was detected neither on the surface of infected cells nor as VLPs in the culture fluid. However, when temperatures during protein expression were lowered, PE2 was processed into mature E2 in a temperature-dependent manner and VLPs were abundantly produced. So, temperature shift-down during synthesis is a prerequisite for correct SAV glycoprotein processing and recombinant VLP production

    A reference human induced pluripotent stem cell line for large-scale collaborative studies

    Get PDF
    Human induced pluripotent stem cell (iPSC) lines are a powerful tool for studying development and disease, but the considerable phenotypic variation between lines makes it challenging to replicate key findings and integrate data across research groups. To address this issue, we sub-cloned candidate human iPSC lines and deeply characterized their genetic properties using whole genome sequencing, their genomic stability upon CRISPR-Cas9-based gene editing, and their phenotypic properties including differentiation to commonly used cell types. These studies identified KOLF2.1J as an all-around well-performing iPSC line. We then shared KOLF2.1J with groups around the world who tested its performance in head-to-head comparisons with their own preferred iPSC lines across a diverse range of differentiation protocols and functional assays. On the strength of these findings, we have made KOLF2.1J and its gene-edited derivative clones readily accessible to promote the standardization required for large-scale collaborative science in the stem cell field

    Mediterranean Diet, Alzheimer Disease Biomarkers, and Brain Atrophy in Old Age

    Get PDF
    Objective: To determine whether following a Mediterranean-like diet (MeDi) relates to cognitive functions and in vivo biomarkers for Alzheimer disease (AD), we analyzed cross-sectional data from the German DZNE-Longitudinal Cognitive Impairment and Dementia Study. Method: The sample (n = 512, mean age 69.5 ± 5.9 years) included 169 cognitively normal participants and individuals at higher AD risk (53 with relatives with AD, 209 with subjective cognitive decline, and 81 with mild cognitive impairment). We defined MeDi adherence according to the food frequency questionnaire. Brain volume outcomes were generated via voxel-based morphometry on T1-MRI, and cognitive performance was assessed with an extensive neuropsychological battery. AD-related biomarkers (β-amyloid42/40 [Aβ42/40] ratio, phosphorylated tau 181 [pTau181]) in CSF were assessed in n = 226 individuals. We analyzed the associations between MeDi and outcomes with linear regression models controlling for several covariates. In addition, we applied hypothesis-driven mediation and moderation analysis. Results: Higher MeDi adherence related to larger mediotemporal gray matter volume (p < 0.05 family-wise error corrected), better memory (β ± SE = 0.03 ± 0.02; p = 0.038), and less amyloid (Aβ42/40 ratio, β ± SE = 0.003 ± 0.001; p = 0.008) and pTau181 (β ± SE = −1.96 ± 0.68; p = 0.004) pathology. Mediotemporal volume mediated the association between MeDi and memory (40% indirect mediation). Finally, MeDi favorably moderated the associations among Aβ42/40 ratio, pTau181, and mediotemporal atrophy. Results were consistent correcting for APOE-ε4 status. Conclusion: Our findings corroborate the view of MeDi as a protective factor against memory decline and mediotemporal atrophy. They suggest that these associations might be explained by a decrease of amyloidosis and tau pathology. Longitudinal and dietary intervention studies should further examine this conjecture and its treatment implications

    Consensus Paper: Cerebellum and Social Cognition.

    Get PDF
    The traditional view on the cerebellum is that it controls motor behavior. Although recent work has revealed that the cerebellum supports also nonmotor functions such as cognition and affect, only during the last 5 years it has become evident that the cerebellum also plays an important social role. This role is evident in social cognition based on interpreting goal-directed actions through the movements of individuals (social "mirroring") which is very close to its original role in motor learning, as well as in social understanding of other individuals' mental state, such as their intentions, beliefs, past behaviors, future aspirations, and personality traits (social "mentalizing"). Most of this mentalizing role is supported by the posterior cerebellum (e.g., Crus I and II). The most dominant hypothesis is that the cerebellum assists in learning and understanding social action sequences, and so facilitates social cognition by supporting optimal predictions about imminent or future social interaction and cooperation. This consensus paper brings together experts from different fields to discuss recent efforts in understanding the role of the cerebellum in social cognition, and the understanding of social behaviors and mental states by others, its effect on clinical impairments such as cerebellar ataxia and autism spectrum disorder, and how the cerebellum can become a potential target for noninvasive brain stimulation as a therapeutic intervention. We report on the most recent empirical findings and techniques for understanding and manipulating cerebellar circuits in humans. Cerebellar circuitry appears now as a key structure to elucidate social interactions

    Abstracts of presentations on plant protection issues at the xth international congress of virology: August 11-16,1996 Binyanei haOoma, Jerusalem, Israel Part 2 Plenary Lectures

    Get PDF
    corecore