Mediterranean diet, Alzheimer's disease biomarkers and brain atrophy in old age

Tommaso Ballarini PhD¹, Debora Melo van Lent PhD^{1,27}, Julia Brunner MSc¹, Alina

Schröder MSc¹, Steffen Wolfsgruber PhD^{1,2}, Slawek Altenstein Dipl.-Psych.^{3,4}, Frederic

Brosseron PhD^{1,2}, Katharina Buerger MD^{5,6}, Peter Dechent PhD⁷, Laura Dobisch MSc^{8,9},

Emrah Düzel MD^{8,9}, Birgit Ertl-Wagner MD¹⁰, Klaus Fliessbach MD^{1,2}, Silka Dawn

Freiesleben MSc¹¹, Ingo Frommann Dipl.-Psych¹, Wenzel Glanz MD⁸, Dietmar Hauser Dipl.-

Psych¹¹, John Dylan Haynes PhD¹², Michael T. Heneka MD^{1,2}, Daniel Janowitz MD⁶, Ingo

Kilimann MD^{13,14}, Christoph Laske MD^{15,16}, Franziska Maier MD²⁰, Coraline D. Metzger

MD^{8,9}, Matthias H. Munk MD^{15,16}, Robert Perneczky MD^{5,17,18,19}, Oliver Peters MD^{3,11}, Josef

Priller MD^{3,4}, Alfredo Ramirez MD²⁰, Boris Rauchmann MD¹⁷, Nina Roy PhD¹, Klaus

Scheffler PhD²¹, Anja Schneider MD^{1,2}, Annika Spottke MD^{1,22}, Eike Jakob Spruth MD^{3,4},

Stefan Teipel MD^{13,14}, Ruth Vukovich MD²³, Jens Wiltfang MD^{24,23,25}, Frank Jessen MD^{1,20,26}

& Michael Wagner PhD^{1,2}, On behalf of the DELCODE study group

1 German Center for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, 53127 Bonn, Germany

2 Department of Neurodegeneration and Geriatric Psychiatry, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany

3 German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany

4 Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, 10117 Berlin,

Germany

5 German Center for Neurodegenerative Diseases (DZNE, Munich), Feodor-Lynen-Strasse 17, 81377 Munich, Germany

6 Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Feodor-Lynen-Strasse 17, 81377 Munich, Germany

7 MR-Research in Neurology and Psychiatry, Georg-August-University Göttingen, Germany 8 German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany 9 Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany

10 Institute for Clinical Radiology, Ludwig-Maximilians-University, Marchioninistr. 15,

81377 Munich

11 Charité – Universitätsmedizin Berlin, Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany

12 Bernstein Center for Computational Neuroscience, Charité — Universitätsmedizin, Berlin,

Germany

13 German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany

14 Department of Psychosomatic Medicine, Rostock University Medical Center, Gehlsheimer Str. 20, 18147 Rostock

15 German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany

16 Section for Dementia Research, Hertie Institute for Clinical Brain Research and

Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany

17 Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich,

Germany

18 Munich Cluster for Systems Neurology (SyNergy) Munich, Munich, Germany

19 Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London, UK

20 Department of Psychiatry, University of Cologne, Medical Faculty, Kerpener Strasse 62, 50924 Cologne, Germany

21 Department for Biomedical Magnetic Resonance, University of Tübingen, 72076 Tübingen, Germany

22 Department of Neurology, University of Bonn, Venusberg-Campus 1, 53127 Bonn,

Germany

23 Department of Psychiatry and Psychotherapy, University Medical Center Goettingen,

University of Goettingen, Von-Siebold-Str. 5, 37075 Goettingen

24 German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany

25 Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal

26 Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931Köln, Germany

27 University of Texas Health Science Center at San Antonio: San Antonio, TX, US

Search Terms: [26] Alzheimer's disease; [201] Memory; [126] MRI; Mediterranean Diet; Biomarkers

Corresponding author:

Dr. Tommaso Ballarini,

German Center for Neurodegenerative Disease, Bonn, Venusberg-Campus 1, 53127 Bonn, Germany

E-Mail: tommaso.ballarini@dzne.de

Financial Disclosures: Authors Ballarini, Melo van Lent, Brunner, Schröder, Wolfsgruber, Altenstein, Brosseron, Buerger, Dechent, Dobisch, Düzel, Ertl-Wagner, Fliessbach, Freiesleben, Frommann, Glanz, Hauser, Haynes, Heneka, Janowitz, Kilimann, Laske, Maier, Metzger, Munk, Perneczky, Peters, Ramirez, Rauchmann, Roy, Scheffler, Schneider, Spottke, Spruth, Teipel, Vukovich, Wiltfang, and Wagner report no disclosures.

Dr. Jessen received fees for consultation from Eli Lilly, Novartis, Roche, BioGene, MSD, Piramal, Janssen, Lundbeck

Dr. Priller received fees for consultation, lectures, patents from Neurimmune, Axon, Desitin, Epomedics

Statistical analysis conducted by Dr. Tommaso Ballarini from German Center for Neurodegenerative Diseases, Bonn, Germany.

Study funded by the German Center for Neurodegenerative Diseases (Deutsches zentrum für Neurodegenerative Erkrankungen, DZNE) and by the Diet Body Brain research cluster funded by the German Federal Ministry of Education and Research (BMBF; grant 01EA1809C). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Supplemental information available at:

https://datadryad.org/stash/dataset/doi:10.5061/dryad.6t1g1jwxg

Abstract

Objective: To determine if following a Mediterranean-like diet (MeDi) relates to cognitive functions and *in vivo* biomarkers for Alzheimer's disease (AD), we analyzed cross-sectional data from the German Longitudinal Cognitive Impairment and Dementia Study

Method: The sample (n=512, mean age: 69.5 \pm 5.9 years) included 169 cognitively normal participants and subjects at higher AD risk (53 AD relatives, 209 SCD and 81 MCI). We defined MeDi adherence based on the Food Frequency Questionnaire. Brain volume outcomes were generated via voxel-based morphometry on T1-MRI and cognitive performance with an extensive neuropsychological battery. AD-related biomarkers (A β 42/40 ratio, pTau181) in cerebrospinal fluid were assessed in n=226 individuals. We analyzed the associations between MeDi and the outcomes with linear regression models controlling for several covariates. Additionally, we applied hypothesis-driven mediation and moderation analysis.

Results: Higher MeDi adherence related to larger mediotemporal gray matter volume (p<0.05 FWE corrected), better memory ($\beta\pm$ SE = 0.03 ± 0.02; p=0.038), and less amyloid (A β 42/40 ratio, $\beta\pm$ SE = 0.003 ± 0.001; p=0.008) and pTau181 pathology ($\beta\pm$ SE = -1.96±0.68; p=0.004). Mediotemporal volume mediated the association between MeDi and memory (40% indirect mediation). Finally, MeDi favorably moderated the associations between A β 42/40 ratio, pTau181 and mediotemporal atrophy. Results were consistent correcting for ApoE-ε4 status.

Conclusion: Our findings corroborate the view of MeDi as a protective factor against memory decline and mediotemporal atrophy. Importantly, they suggest that these associations might be explained by a decrease of amyloidosis and tau-pathology. Longitudinal and dietary intervention studies should further examine this conjecture and its treatment implications.

Ballarini et al., 6

Introduction

Healthy dietary patterns, such as the Mediterranean diet (MeDi), might reduce the risk of dementia and cognitive decline ^{1–4}. Although contrasting findings have been reported as well ^{5,6}, encouraging results were provided by the PREDIMED study, a randomized clinical trial in which a MeDi intervention was associated with both improved cognitive functioning ⁷ and reduced incident mild cognitive impairment ⁸. Likewise, adherence to MeDi could diminish the conversion rate from mild cognitive impairment to dementia ^{9,10}.

At the biomarker level, MeDi has been associated with preserved cortical thickness and brain volume in middle-aged ^{11,12} and old individuals ^{13–15}, especially in brain regions associated with aging and Alzheimer's disease (AD). Moreover, adherence to MeDi has been related to lower amyloid load studied with ¹¹C-Pittsburgh compound B[PiB]-PET in cognitively unimpaired individuals ^{11,16,17}, while another study could not find such an association using ¹⁸F-Florbetaben-PET ¹⁸. Furthermore, one study found an association in both volunteers with subjective or mild cognitive impairment (SCD and MCI, respectively) between MeDi and lower FDDNP-PET, a compound measure of amyloid and tau pathology ¹⁹. Two longitudinal studies reported better MeDi adherence to be associated with less amyloid accumulation over time ^{17,20}. This initial evidence suggests that MeDi might reduce amyloid deposition since midlife with a probable downstream effect on neurodegeneration and cognition. We additionally hypothesized that MeDi is associated with Tau levels and moderates the associations between amyloid, tau and brain atrophy. Here, we examined these questions by leveraging a large cohort of old individuals at increased risk for AD.

Materials and Methods

Ballarini et al., 7

Participants

As of July 2020, the baseline of the German multicenter Longitudinal Cognitive Impairment and Dementia Study (DELCODE) includes 1079 individuals. A complete overview of the study design, group definitions and aims is provided in Jessen et al. (2018) ²¹. Here, we selected 512 subjects (average age \pm standard deviation (SD): 69.49±5.86, 270 female, self-reported sex) according to availability of both the detailed Food Frequency Questionnaire (FFQ) and T1-weighted MRI. The sample was enriched for risk of AD as it included individuals with SCD (n=209, 41%) or amnestic MCI (n=81, 16%) who were referrals to the participating memory clinics. SCD participants reported self-perceived cognitive decline with concerns, while showing a preserved performance in all tests of the Consortium to Establish a Registry for Alzheimer's Disease - CERAD - neuropsychological battery (above -1.5 standard deviations compared to age, sex and education adjusted norms). Conversely, amnestic MCI subjects performed below -1.5 standard deviations on the delayedrecall trial of the CERAD word-list episodic memory tests. The clinical diagnoses were part of the clinical work-up at each site (not of DELCODE itself) and conformed to published research criteria ²²⁻²⁴. In addition, first-degree relatives of AD patients (n=53, 10%) and cognitively normal volunteers without increased risk for AD (n=169, 33%) were recruited with an advertisement campaign on the local newspaper. Both groups met the requirement for an unimpaired cognitive performance on the CERAD battery (as the SCD group).

Complete demographic information is reported in Table 1 and stratified by clinical group in Table e-2. A sub-sample of 226 participants additionally underwent lumbar puncture for assessment of AD-related neuropathological biomarkers in cerebrospinal fluid (CSF). Comparing the groups with and without CSF information we did not find

differences in age, sex distribution, prevalence of ApoE-ɛ4, body mass index (BMI), kcal/day, level of physical activity (as measured with the Physical Activity Scale for the Elderly) ²⁵ or MeDi score. However, subjects with CSF data available had a lower educational attainment, a higher prevalence of MCI and, accordingly, a lower performance in the mini-mental scale examination (Table e-1).

Standard Protocol Approvals, Registrations, and Patient Consent

At each DELCODE site, the local institutional review boards approved the study protocol and the ethical committees issued local ethical approval. DELCODE is registered at the German Clinical Trials Register (DRKS00007966; 4/05/2015). The study protocol followed the ethical principles for human experimentation in accordance with the Declaration of Helsinki. All participants in the study provided written informed consent.

Magnetic Resonance Imaging acquisition

The acquisition of structural brain images was performed with 3 Tesla MRI scanners mounting 32-channel head array coils. A 3D T1-weighted Magnetization Prepared-RApid Gradient Echo – MPRAGE – sequence was used, with echo time of 4.37 ms, repetition time of 2500 ms, inversion time of 1100 ms and flip angle of 7°. All images had a 1 mm³ isotropic nominal image resolution with a final image matrix of 256×256×192. Four different MRI scanners from SIEMENS manufacturer (Siemens Healthcare, Erlangen, Germany) were used across centers: MAGNETOM TrioTim (N=209), Verio (N=163), Skyra (N=110), and Prisma (N=30). Image quality assessment is described in the supplements (Dryad-link).

Cognitive assessment

All study participants underwent an in-depth neuropsychological assessment to cover a broad spectrum of cognitive functioning ²¹. Our analysis focused on five factor scores derived from a confirmatory factor analysis and capturing the cognitive performance in different domains: memory, language, executive functions, working memory and visuospatial abilities. Rationale and methods for the definition of factor scores are described in Wolfsgruber et al. (2020) ²⁶. A list of the cognitive tests contributing to each cognitive domain is reported in Table e-3.

Dietary assessment and MeDi score definition

We administered the German adaptation of the semi-quantitative European Prospective Investigation of Cancer FFQ (EPIC-FFQ) ²⁷ (more details in supplements). Our sample of 512 participants did not include subjects who reported abnormal daily energy intake defined as less of 500 kcal/day or more than 5000 kcal/day (n=4) and subjects who did not answer more than 20% of the FFQ questions (n=2).

We computed the *a priori* MeDi score based on sex-specific medians from this study population. Briefly, food items from the EPIC-FFQ were clustered into 9 food categories. A score of 1 was assigned when the food intake for one subject was equal or above the sex-specific median for six food categories typical of MeDi (fish, vegetables, fruits/nuts, legumes, cereals and higher ratio of monounsaturated/saturated fats) or below the cut-off for foods non-typical of MeDi (meat, dairy products). For alcohol, a moderate consumption (10-50 g/day in men and 5-25 g/day in women) was considered beneficial and scored 1 point. The final MeDi score can span from 0 to 9, with higher values indicating higher adherence ²⁸. Table e-4 and a Figure e-3 display each food category stratified by MeDi score (low, medium, high) and sex.

Cerebrospinal fluid sampling and assessment

A subsample of 226 participants consented to undergo lumbar puncture. All procedures were guided by DZNE standard operating procedures (see supplementary methods). We focused our analyses on phosphorylated tau 181 (pTau181), amyloid-beta 1-42 (A β 42), on their ratio A β 42/pTau181 and on the ratio amyloid-beta 42/40 (A β 42/40) to take into account individual differences in overall A β peptide concentrations ²⁹.

Voxel-based morphometry analysis

We applied voxel-based morphometry ³⁰ to study the relationship between gray matter volume and MeDi. All analyses were performed using the Computational Anatomy Toolbox (CAT12) and Statistical Parametric Mapping (SPM12, Wellcome Trust Centre for Neuroimaging, UCL, London, UK) running on Matlab[®] 2014b (The MathWorks Inc., Natick, MA). All T1-MRI images were normalized to the Montreal Neurological Institute – MNI – standard space and segmented into gray matter, white matter and cerebrospinal fluid compartments. Modulation of preprocessed MRI images included both linear and non-linear deformations (i.e. Jacobian determinants) to account for contractions and expansions during image normalization. Image smoothing was applied with a 8 mm full-width-at-half-maximum Gaussian kernel.

Total intracranial volume and total gray matter volume were extracted from CAT12 output.

The association between MeDi score and gray matter volume was investigated via application of the general linear model (one-sample t-test in SPM12) entering age, sex, total intracranial volume and MRI scanner type as nuisance covariates. Heterogeneity in MRI devices was expressed using one-hot encoding for categorical data to avoid order effects. Additionally, we re-run the analysis correcting also for kcal, BMI, physical activity levels and ApoE-E4 status. The model was first applied at the whole-brain level, without any a priori hypothesis and then restricted to hypothesis-driven regions of interest (ROI) in the mediotemporal lobe, which shows early changes in AD³¹. Anatomical ROI were selected from the Automated Anatomical Labeling – AAL – atlas using the Wake Forest University Pickatlas tool for SPM (bilateral hippocampi and parahippocampal gyri). Of note, the entorhinal cortex is included in the parahippocampal gyrus ROI as defined in the AAL atlas (Figure e-4). Correction for multiple comparisons was performed with the nonparametric threshold free cluster enhancement – TFCE – approach implemented in SPM (http://www.neuro.uni-jena.de/tfce/). We used the TFCE technique with 5000 permutations, weighting parameters for cluster extent E=0.6 and height H=2 and a significance level of p < 0.05 (Family-Wise Error – FWE – corrected).

Statistical analysis on CSF variables and cognitive factors

We assessed the associations between MeDi and cognition or CSF variables with linear regression models adjusted for age, sex and education. The analysis was repeated including supplementary covariates to control for potential confounding effects from BMI, caloric intake and physical activity, as well as for ApoE-ε4. Outliers identified on CSF variables were removed from the analysis, leading to the exclusion of 12 subjects who had values at 1.5 multiplied by the interquartile range below or above the 25^{th} or the 75^{th} percentile, respectively. Figure e-2 displays the distributions of CSF variables. We repeated the analysis without outlier exclusion (applying log transformation to pTau181) and with robust linear regression, which is less sensitive to outliers. Finally, all linear models were corrected for the time distance between baseline visit (when biomarkers and cognitive assessment took place) and FFQ questionnaire (mean±SD: 41.5 ± 43.17 weeks: median: 51.7 weeks).

Mediation analysis

We created hypothesis-driven models and tested them with mediation and moderated mediation analysis. All models were created with *processR* and estimated with *lavaan* package (version 0.6-5, <u>http://lavaan.ugent.be/</u>) in R 3.6.3.

The aim of *Model 1* was to investigate the interplay between MeDi, brain volume and memory function. Specifically, we hypothesized that the brain changes observed in the bilateral hippocampi and parahippocampal regions mediate the association between MeDi and memory identified in the regression analyses (Figure 2). The model included all the 512 subjects in the study. Gray matter values were extracted from the significant cluster from the ROI-based analysis using MarsBaR toolbox for SPM. In order to assess the specificity of the mediation effect for mediotemporal regions, we replicated a similar mediation model using total gray matter volume as mediator. A parameter to model the indirect effects of MeDi on memory via brain measures was included.

We then designed additional models to disentangle the moderation effect of MeDi on the associations between A β 42/40 ratio and pTau181 and brain volume in mediotemporal regions. In particular, we adopted the theoretical framework of the amyloid cascade hypothesis according to which amyloidosis is the earliest upstream pathological event that leads to tau phosphorylation and finally to brain atrophy³². The following models were therefore performed on the sub-sample with CSF information. The rationale for these models is that MeDi adherence might sustain brain maintenance, thus reducing the development of disease-related brain changes and pathology ³³. In particular, we expected that MeDi moderates the paths connecting neuropathology and brain atrophy as defined by the amyloid cascade model. First, we tested a mediation model reflecting the amyloid cascade hypothesis itself, i.e. $A\beta 42/40 \rightarrow pTau 181 \rightarrow brain volume (Model2.0)$. Then, we tested two additional models where MeDi score was added as moderator either of the path connecting A β 42/40 to pTau181 (*Model2.1*, first stage mediation) or on the path connecting pTau181 to brain volume (Model 2.2, second stage mediation). This analysis allows to test if the associations between A β 42/40 and pTau181 and between pTau181 and brain volume vary at different levels of MeDi. A schematic visualization of the models is presented in Figure 2.

In all models we included age, sex and education level as background confounds and brain measures were additionally corrected for total intracranial volume. Additionally, we tested the influence of ApoE- ϵ 4 as covariate. The significance of the associations was based on confidence intervals generated with bias corrected bootstrap with 10000 replicates. In the moderated mediation models, all predictors were mean centered. For *Model 2.1* and *2.2* direct and indirect effects were evaluated at different levels of the moderator (i.e. MeDi) using the mean \pm 1 standard deviation approach. In addition, we report the index of moderated mediation, which reflects if the indirect effects vary at different levels of the moderator.

Exploratory analysis of MeDi diet components

To explore the individual contribution of each of the nine MeDi score components, we run additional linear regression models. Dependent variables were the memory factor score, brain volume in hippocampal and para-hippocampal regions, pTau181 or $A\beta 42/40$ ratio. In each model, we entered all dichotomous MeDi components at once, correcting for age, sex, education, caloric intake, BMI and physical activity.

Data availability

Anonymized data generated and analyzed in the current study will be made available upon reasonable request from qualified investigators.

Results

Brain volume

Whole-brain results. The MeDi score showed a significant positive association with brain gray matter volume in the right parahippocampal gyrus and right hippocampus (p<0.05 FWE corrected). The opposite contrast did not show any negative. Results are shown in Figure 1, left panel and in Table 2. Figure e-1 shows the results corrected using the less conservative p<0.05 FDR approach (Drylad-link).

ROI-based results. Restricting the analysis to *a priori* ROI revealed a bilateral association between higher MeDi and increased gray matter volume in hippocampi and parahippocampal gyri (p<0.05 FWE corrected). Of note, we observed also in this analysis a right>left asymmetry (Figure 1, right panel and Table 2). The reverse

contrast did not reveal any inverse association. Of note, a 1-point increase in MeDi corresponds to an increase in brain volume in the significant cluster associated with - 0.84 years of age. The result of whole-brain and ROI-based analyses were stable correcting for kcal, BMI, physical activity and ApoE-ɛ4 status. The unthresholded T-maps of whole-brain models are available at Neurovault (https://neurovault.org/collections/KMIELIOW/).

Cognition

The models adjusted for age, sex and education showed an association between MeDi and both memory (F(4,507)=57.87, p<0.001, R²=0.31) and language (F(4,507)=59.22, p<0.001, R²=0.32) but not for the other domains (Table 3). In the models additionally corrected for BMI, caloric intake and physical activity, only the association between an increased adherence to MeDi and an improved memory performance remained (F(7,482)=30.57, p< 0.001, R²=0.31). Here, a 1-point increase of MeDi corresponded to an increase of memory performance associated with almost -1 year of age. Correcting for ApoE- ε 4 and time distance between baseline visit and FFQ did not change the results (Table 3 and Table e-7).

CSF biomarkers

The linear regression models showed significant associations of MeDi with pTau181 $(F(4,209)=6.02, p<0.001, R^2=0.103), A\beta 42/40 (F(4,209)=6.15, p<0.001, R^2=0.105)$ and A β 42/pTau181 (F(4,209)=6.29, p<0.001, R^2=0.107). The associations of MeDi with pTau181 (F(7,197)=4.118, p<0.001, R^2=0.128), A\beta42/40 (F(7,197)=3.509, p=0.0014, R²=0.111) and A β 42/pTau181

(F(7,197)=3.933, p<0.001, R²=0.123) were stable additionally controlling for BMI, caloric intake and physical activity (Table 3). Higher adherence to MeDi showed associations with pTau181 and both Aβ42/Aβ40 and Aβ42/pTau181 ratios. Specifically, in the adjusted models, a unity increase in MeDi score was associated with a decrease of 1.96 pg/mL of pTau181 and with an increase of 0.0027 and of 0.71 in Aβ42/Aβ40 and Aβ42/pTau181 ratios, respectively. For comparison, a 1-point increase in MeDi corresponded to a decrease of the neuropathological burden on Aβ42/Aβ40 and pTau181 associated with over -3 years of age (-3.5 and -3.33 years, respectively). Correcting for ApoE-ε4 reduced the associations between MeDi and CSF biomarkers for amyloid (but showing a consistent pattern of results, Table 3), while the time distance between baseline visit and FFQ did not influence the results (Table e-7). We observed very similar results in the analysis without outlier exclusion and using both linear and robust linear regressions (Table-e5).

Mediation models

Model 1 revealed a significant indirect effect of MeDi on memory via brain volume in hippocampal and para-hippocampal regions (est=0.017, ci= 0.007 to 0.03). Notably, the direct effect of MeDi on memory was no longer significant (est=0.025, ci= -0.005 to 0.056), thus suggesting complete mediation. The indirect pathway representing the effect of MeDi on memory via hippocampal and para-hippocampal volume accounted for 40% of the total effect. The replication of *Model 1* using total gray matter volume showed a significant direct effect, while the indirect effect was weak and accounted only for 4.6% of the total effect (Table e-6).

Model 2.0 showed a complete mediation of A β 42/40 on brain volume through pTau181, in that only the indirect effect (est=0.109, ci=0.009 to 0.0239) was

significant and explained 34% of the total effect. In *Model 2.1* we observed a significant index of moderated mediation (est=-0.02, ci= -0.065 to -0.001) and significant indirect effects at all levels of the moderator. The indirect effect was larger for lower values of MeDi and decreased for higher MeDi score. The proportion of the total effect mediated by the A β 42/40 \rightarrow pTau181 \rightarrow brain volume path at different levels of MeDi was 39% at -1 standard deviation, 32% at the mean level and 23% at +1 standard deviation. *Model 2.2* showed a significant index of moderated mediation (est= -0.047, ci= -0.101 to -0.004) and a significant indirect effect only at the lowest level of the moderator, i.e. at -1 standard deviation. Complete details are displayed in Table 4. All mediation and moderated-mediation models showed consistent results when correcting for ApoE- ϵ 4 (Table 4).

Individual contributions of MeDi diet components

Table e-9 displays the results of the exploratory analysis on individual MeDi components. With MEM as dependent variable we observed a significant positive association only for cereals (p=0.013). Congruently, only cereals showed a marginally significant positive association with mediotemporal volume (p=0.056). For both pTau181 and A β 42/40 ratio a significant association was found with the ratio of monounsaturated/saturated fat (p=0.021 and p=0.038, respectively). Specifically, an increased ratio of monounsaturated/saturated fat was associated with increased levels of A β 42/40 and decreased burden of pTau181.

Discussion

Overall, our results suggest that the favorable association between MeDi adherence and memory performance, found here as in many previous studies, could be mediated by preservation of brain volume in mediotemporal regions. Moreover, we showed that MeDi adherence is inversely associated with both pathological biomarkers for amyloidosis and tauopathy, which underlie AD. Finally, our data shows that a healthier diet moderates the associations between A β 42/40, pTau181 and brain atrophy, suggesting that MeDi contributes to brain maintenance ³³.

First, we observed a significant association between MeDi and hippocampal and parahippocampal regions in both whole-brain and in ROI-based analyses. This is in line with studies that reported positive associations between MeDi and brain morphology in cognitively normal mid- and old-aged subjects and in non-demented elderly individuals ^{11–15}. However, one study reported no significant association between MeDi and brain volume ³⁴ and one other reported an association only with meat consumption, but not with MeDi as a whole ³⁵.Compared to these studies, we analyzed a larger sample enriched for AD risk, thus possibly making our analysis more sensitive to capture brain structural variations related to MeDi. Moreover, in both negative studies there was a larger temporal distance between dietary and MRI data assessments (5 and 9 years, respectively) which might have influenced the results. Several hypotheses could be advanced concerning the link between diet and brain structural integrity. Considering our moderated mediation results, we hypothesize that the adherence to MeDi protects brain structures from the adverse effects of upstream pathological events, i.e. accumulation of amyloid plaques and tau phosphorylation. This hypothesis would clarify why the association between MeDi and brain structure is specific for the mediotemporal regions, as AD-related atrophy starts in these regions and co-localizes with tau accumulation.

The second main finding is the favorable association between MeDi and memory performance. In particular, we show a significant positive association between diet and a composite memory factor score which, capitalizing on an in-depth memory assessment, was used to quantify the level of memory performance in our sample ²⁶. This finding replicates previous work performed on a smaller interim release of DELCODE ³⁶ and is in agreement with the view of MeDi as a protective lifestyle factor against cognitive decline and dementia ^{1–3}. Despite a protective effect of MeDi has been reported for general cognition and for different cognitive domains, memory seems to be the one that benefits more from a healthy diet ^{15,37,38}, in line with the regional specific association with brain volume. The analysis of the individual MeDi score components showed a significant association between memory and the item 'cereals'. This supports previous studies showing a protective effect of cereals, and in particular whole grains, on cognition ^{37,39}. We propose that the specificity of our findings for the memory domain should be interpreted in light of the mediation analysis, showing that the mediotemporal volume mediates the association between MeDi and memory. Of note, the mediation effect was specific for the mediotemporal regions, in that the mediating effect of total gray matter volume was very weak.

Finally, the analysis of the sub-sample with CSF information allowed us to investigate the associations between MeDi and AD-related biomarkers as well as to model their interplay with brain volume. First, we reported that MeDi is associated with lower levels of amyloid as expressed by the A β 42/40 ratio and with reduced pTau181. In agreement with our observations, previous studies in middle- and old-age cognitively normal subjects reported that diet is associated with reduced amyloid levels and amyloid accumulation as studied with PiB-PET assessments ^{17,20}. Of note, we observed a significant association between MeDi and A β 42/40 ratio, but not with A β 42. Previous studies suggested that A β 42/40 ratio is a more sensitive biomarker for AD as compared to A β 42 ²⁹. Moreover, a recent study on a cell culture model of AD

showed the relevance $A\beta42/40$ ratio, but not total amyloid, as driver of tau pathology ⁴⁰. The mediation *Model 2* is in line with the amyloid cascade hypothesis, showing a link between $A\beta42/40$, pTau181 and brain atrophy ³². Then, in *Model 2.1* and *2.2* we showed that MeDi exerts a significant moderation effect both on the association between $A\beta42/40$ ratio and pTau181 and, to a lesser extent, on the one between pTau181 levels and brain atrophy, specifically mitigating their associations. However, these models should be interpreted with caution as they rely on cross-sectional data and cannot therefore prove causal pathways. A possible (and speculative) mechanistic interpretation of these observations is that MeDi acts on the triggers that connect these pathological events, for example inflammation ⁴¹ and oxidative stress ⁴². MeDi is indeed based on higher consumption of fruits and vegetables, whole grains, fish and olive oil that are known for their anti-inflammatory and antioxidant actions ⁴³. Future studies could include markers for inflammation or oxidative stress to test more fine-grained hypotheses concerning the underlying biological processes.

Notably, the exploratory analysis of the individual MeDi components showed a beneficial association between the ratio of monounsaturated/saturated fat and both pTau181 and A β 42/40 ratio. Monounsaturated fats are found in many food sources such as plant oils, nuts, seeds, and animal products and a combination of them likely accounted for the total level in our study. In Mediterranean regions higher scores of monounsaturated/saturated fat ratio most likely reflect higher consumption of extravirgin olive, which has been associated with reduced AD-pathology in mice ⁴⁴ and with better cognitive performance in human subjects of the PREDIMED trial ⁸.

A strength of the present study is the availability of multiple data types, which enabled the integration of dietary information, cognitive data, brain morphometry and CSF biomarkers. This allowed us to model not only the associations between MeDi and the single variables of interest, but also their interplay. Another strength is that the sample is enriched for AD risk. While this constrains generalization to the old population at large, it allows studying the interaction of diet with substantial variation of amyloid, tau, and brain neurodegeneration in a group that could be a target for nutritional intervention trials. We additionally repeated the regression models excluding individuals with MCI, the highest-risk clinical group. This showed a stable association of MeDi with mediotempoal brain volume, but not with other outcomes, pTau181, A β 42/40 ratio and memory (Table e-10). This might indicate that the beneficial association between MeDi and AD-related biomarkers and cognition are more pronounced in the prodromal AD stages. However, these negative findings might also be attributable to reduced power in the sub-sample analysis and to lower variability in the outcomes.

A limitation of the present cross-sectional study is that it does not allow causal inference. However, MeDi diet scores are stable over years in older adults, even in the years before a diagnosis of incident dementia ^{1,45} and Maude et al. showed that the longitudinal trajectories of MeDi over 15 years are comparable between women who showed cognitive decline and those who did not in the Nurses' Health Study ⁴⁶. Therefore, we posit that MeDi adherence reflects the past aggregate exposure to the MeDi ingredients, so that the statistical associations with MeDi described above could result from accumulated long-term causal effects of diet. The extension to longitudinal data, including data from DELCODE follow-ups, should be the next step to address this limitation and validate the proposed models. Moreover, it has to be noted that the analysis of the single components presented here is exploratory and should be validated by more focused studies. Future studies in humans and animal models could focus on specific hypothesis-driven dietary components and leverage on

modern techniques to directly measure their effects on the metabolome and microbiome ⁴⁷. On the same line, recent efforts to map the chemical complexity of diets provide a promising avenue for a deeper understanding of the effects of diet on health and disease ⁴⁸. It has to be mentioned that previous studies reported an association between different dietary patterns (i.e. Western diet and the Alternative Healthy Eating Index 2010) and risk of dementia and cognitive decline ⁴⁹ or ADrelated markers, such as hippocampal volume ⁵. This might question if the results reported in our study are specific for MeDi or rather reflect a more general advantage of a healthy diet. This is linked to another limitation of our and similar studies where MeDi adherence is defined on sample medians, thus representing the relative adherence to dietary guidelines and not the high consumption of beneficial foods in absolute terms as in Mediterranean regions. Moreover, it is possible that MeDi has systemic effects on health (e.g. modulating inflammation or cardiovascular health ⁵⁰) that might in turn influence AD-specific mechanisms. Our results were stable when controlling for factors associated with cardiovascular risk (BMI, physical activity and smoking, see Table e-8), but a deeper investigation of this topic is needed. The study of many other biomarkers such as diffusion tensor imaging, resting-state functional connectivity and markers for neuroinflammation, especially in longitudinal study design, could help generating a more comprehensive and mechanistic understanding of the effects of MeDi on cognition in old age and early AD.

In conclusion, our study supports the view of MeDi as a protective lifestyle factor against AD-related neurodegeneration and memory impairment. Longitudinal studies with AD biomarker outcomes could further examine this conjecture and pave the way for dietary interventions to delay AD.

Acknowledgements

We would like to thank all participants of the DELCODE study for their contribution.

Appendix 1 – Authors contribution to the manuscript

Name	Location	Role	Contribution
Tommaso Ballarini, PhD	German Center for Neurodegenerative Diseases (DZNE) Bonn Germany	Author	Conceptualization and design of the study; Statistical Analysis; Interpretation of data; Drafting and/or revision of manuscript for important intellectual content
Debora Melo van Lent, PhD	DZNE Bonn Germany; University of Texas Health Science Center, San Antonio, TX USA	Author	Conceptualization and design of the study; Drafting and/or revision of manuscript for important intellectual content
Julia Brunner, MSc	DZNE Bonn Germany	Author	Drafting and/or revision of manuscript for important intellectual content
Alina Schröder, MSc	DZNE Bonn Germany	Author	Drafting and/or revision of manuscript for important intellectual content
Steffen Wolfsgruber, PhD	DZNE Bonn Germany	Author	Drafting and/or revision of manuscript for important intellectual content
Slawek Altenstein, Dipl Psych.	DZNE Berlin Germany Germany	Author	Drafting and/or revision of manuscript for important intellectual content
Frederic Brosseron, PhD	DZNE Bonn Germany	Author	Drafting and/or revision of manuscript for important intellectual content
Katharina Buerger, MD	DZNE Munich Germany	Author	Drafting and/or revision of manuscript for important intellectual content
Peter Dechent, PhD	Georg-August-University Göttingen, Germany	Author	Drafting and/or revision of manuscript for important intellectual content
Laura Dobisch, MSc	DZNE Magdeburg, Germany	Author	Drafting and/or revision of manuscript for important intellectual content
Emrah Düzel, MD	DZNE Magdeburg, Germany	Author	Drafting and/or revision of manuscript for important intellectual content
Birgit Ertl-Wagner, MD	Ludwig-Maximilians- University, Munich, Germany	Author	Drafting and/or revision of manuscript for important intellectual content
Klaus Fliessbach, MD	DZNE Bonn Germany	Author	Drafting and/or revision of manuscript for important intellectual content
Silka Dawn Freiesleben, MSc	Charité – Berlin, Germany	Author	Drafting and/or revision of manuscript for important intellectual content
Ingo Frommann, Dipl Psych	DZNE Bonn Germany	Author	Drafting and/or revision of manuscript for important intellectual content
Wenzel Glanz, MD	DZNE Magdeburg Germany	Author	Drafting and/or revision of manuscript for important intellectual content
Dietmar Hauser, DiplPsych	Charité – Berlin, Germany	Author	Drafting and/or revision of manuscript for important intellectual content
John Dylan Haynes, PhD	Bernstein Center for Computational Neuroscience, Charité — Berlin, Germany	Author	Drafting and/or revision of manuscript for important intellectual content

Michael T. Heneka, MD	DZNE Bonn Germany	Author	Drafting and/or revision of manuscript
, 	× 1 · × · · · ·		for important intellectual content
Daniel Janowitz, MD	Ludwig-Maximilians- University Munich Germany	Author	Drafting and/or revision of manuscript for important intellectual content
	Christey, Munich, Cermany		Drafting and/or revision of manuscript
Ingo Kilimann, MD	DZNE Rostock, Germany	Author	for important intellectual content
			Drafting and/or revision of manuscript
Christoph Laske, MD	DZNE Tübingen, Germany	Author	for important intellectual content
Franziska Major MD	University of Cologne	Author	Drafting and/or revision of manuscript
Franziska Maler, MD	Germany	Author	for important intellectual content
Coraline D Metzger MD	DZNE Magdeburg Germany	Author	Drafting and/or revision of manuscript
		Tutilor	for important intellectual content
Matthias H. Munk, MD	DZNE Tübingen, Germany	Author	Drafting and/or revision of manuscript
,			for important intellectual content
Robert Perneczky, MD	DZNE Munich Germany	Author	Drafting and/or revision of manuscript
			for important intellectual content
Oliver Peters, MD	DZNE Berlin Germany	Author	Drafting and/or revision of manuscript
			for important intellectual content
Josef Priller MD	DZNE Berlin Germany	Author	Drafting and/or revision of manuscript
		Tutilor	for important intellectual content
Alfredo Ramirez MD	University of Cologne,	Author	Drafting and/or revision of manuscript
	Germany	7 futiloi	for important intellectual content
Boris Rauchmann MD	Ludwig-Maximilians-	Author	Drafting and/or revision of manuscript
	University, Munich, Germany	Autior	for important intellectual content
Nina Roy PhD	DZNE Bonn Germany	Author	Drafting and/or revision of manuscript
101111109,1112		Tutilor	for important intellectual content
Klaus Scheffler, PhD	University of Tübingen,	Author	Drafting and/or revision of manuscript
	Germany		for important intellectual content
Anja Schneider, MD	DZNE Bonn Germany	Author	Drafting and/or revision of manuscript
			Tor important intellectual content
Annika Spottke, MD	DZNE Bonn Germany	Author	Drafting and/or revision of manuscript
			Drafting and/or revision of monuscript
Eike Jakob Spruth, MD	DZNE Berlin Germany	Author	for important intellectual content
			Drofting and/or revision of manuscript
Stefan Teipel, MD	DZNE Rostock, Germany	Author	for important intellectual content
	University of		Drafting and/or revision of manuscript
Ruth Vukovich, MD	Goettingen.Germany	Author	for important intellectual content
			Drafting and/or revision of manuscript
Jens Wiltfang, MD	DZNE Goettingen, Germany	Author	for important intellectual content
			Conceptualization and design of the
			study; Drafting and/or revision of
Frank Jessen, MD	DZNE Bonn Germany	Author	manuscript for important intellectual
			content
			Conceptualization and design of the
			study: Interpretation of data: Drafting
Michael Wagner, PhD	DZNE Bonn Germany	Author	and/or revision of manuscript for
			important intellectual content
	1	1	1 1

Nachname	Vorname	Affiliation	Role	Contribution
Amthauer	Holger	Charité Berlin	Imaging	MRI acquisition and processing at site
Bader	Abdelmajid	Cologne University Medical Center	Study nurse	study administration
Barkhoff	Miriam	DZNE Bonn	student research assistant	neuropsychological testing at site
Bartels	Claudia	University of Goettingen	psychologist	neuropsychological testing at site
Beuth	Markus	Charité Berlin	study physician	medical examinations at site
Bittner	Daniel	DZNE Magdeburg	study physician	medical examinations at site
Boecker	Henning	DZNE Bonn	PI-Imaging	PI for PET data sub study in DELCODE
Brüggen	Katharina	DZNE Rostock	study physician	medical examinations at site
Buchmann	Martina	University of Tuebingen	study physician	medical examinations at site
Bürger	Katharina	DZNE Munich; LMU Munich	PI	PI DELCODE site
Cardenas-Blanco	Arturo	DZNE Magdeburg	imaging/study scientist	MRI acquisition and processing at site
Catak	Cihan	LMU Munich	study physician	medical examinations at site
Cetindag	Arda Can	Charité Berlin	study physician	medical examinations at site
Coloma Andrews	Lisa	LMU Munich	neuropsychologist	neuropsychological testing at site
Cosma	Nicoleta Carmen	Charité Berlin	study physician	medical examinations at site
Daamen	Marcel	DZNE Bonn	QA-Imaging	PET data acquisition, processing, quality control at site
Dichgans	Martin	DZNE Munich	PI	P.I. DELCODE site No.2 in Munich
Dörr	Angelika	LMU Munich	study nurse	study administration, blood sampling at site
Dyrba	Martin	DZNE Rostock	study scientist	various DELCODE scientific projects at site
Engels	Tanja	Cologne University Medical Center	study nurse	study administration, blood sampling at site
Escher	Claus	Cologne University Medical Center	study physician	medical examinations at site

Appendix 2 – Coinvestigators of the DELCODE study group

Faber	Jennifer	DZNE Bonn	study physician	medical examinations at site
Fließbach	Klaus	DZNE Bonn	study physician	medical examinations at site
Frimmer	Daniela	LMU Munich	rater	support of study procedures
Ghiasi	Nasim Roshan	Cologne University Medical Center	Study physician	medical examinations at site
Grieger-Klose	Doreen	DZNE Magdeburg	study nurse	study administration, blood sampling at site
Hartmann	Deike	DZNE Magdeburg	study nurse	study administration, blood sampling at site
Heger	Tanja	DZNE Tuebingen	study nurse	study administration, blood sampling at site
Heine	Christina	Rostock University Medical Center	rater	support of study procedures
Henf	Judith	Rostock University Medical Center	rater	support of study procedures
Hennes	Guido	DZNE Bonn	study nurse	study administration, blood sampling at site
Herrmann	Gabi	DZNE Bonn	research assistant	neuropsychological testing at site
Hinderer	Petra	DZNE Tuebingen	study nurse	study administration, blood sampling at site
Hirschel	Sina	University of Goettingen	psychologist	neuropsychological testing at site
Huber	Brigitte	LMU Munich	study nurse	study administration, blood sampling at site
Hufen	Antje	DZNE Rostock	lab assistant	Blood sample processing & shipping
Incesoy	Enise Irem	Charité Berlin	physician	scientist at site
Janecek-Meyer	Heike	Rostock University Medical Center	lab assistant	Blood sample processing & shipping
Kainz	Christian	Freie Universität Berlin	Imaging	MRI acquisition and processing at site
Kalbhen	Pascal	DZNE Bonn	study physician	medical examinations at site
Kasper	Elisabeth	Rostock University Medical Center	rater	support of study procedures
Kobeleva	Xenia	DZNE Bonn	study physician	medical examinations at site

Kofler	Barbara	DZNE Bonn	study physician	medical examinations at site
Konstantina	Kafali	Charité Berlin	study physician	medical examinations at site
Korp	Christin	DZNE Rostock	Study nurse	ethical application for sub-projects
Kreuzer	Max	LMU Munich		
Kuder-Buletta	Elke	DZNE Tuebingen	study nurse	study administration, blood sampling at site
Langenfurth	Anika	Charité Berlin	study physician	medical examinations at site
Lau	Esther	DZNE Rostock	study nurse	study administration, blood sampling at site
Lindner	Katja	Charité Berlin	study nurse	study administration, blood sampling at site
Lohse	Andreas	Charité Berlin	neuropsychologist	neuropsychological testing at site
Lützerath	Hannah	Cologne University Medical Center	study physician	medical examinations at site
Markov	Eva	LMU Munich	study nurse	study administration, blood sampling at site
Marquardt	Benjamin	Cologne University Medical Center	study nurse	study administration, blood sampling at site
Martikke	Anja	Cologne University Medical Center	administative role	documentation, study administration
Meiberth	Dix	Cologne University Medical Center	neuropsychologist	scientist at site
Miebach	Lisa	DZNE Bonn	psychologist	DELCODE scientist at site
Müller	Anna	DZNE Bonn	study nurse	study administration, blood sampling at site
Müller	Claudia	DZNE Munich	study physician	medical examinations at site
Mychajliw	Christian	DZNE Tuebingen	neuropsychologist	neuropsychological testing at site
Nestor	Peter	Queensland Brain Institute	former Co-PI Magdeburg	various projects
Nuhn	Sabine	University of Goettingen	psychologist	neuropsychological testing at site
Pfaff	Henrike	Rostock University Medical Center	study nurse	study administration, blood sampling at site
Pfahlert	Ilona	University of Goettingen	Imaging	MRI acquisition and processing at site

Polcher	Alexandra	DZNE Bonn	psychologist	scientist at
			poyenerogie	site/neuropsychology
Radenbach	Katrin	University of Goettingen	study physician	medical examinations at site
		Goettingen		study administration
Raum	Heike	DZNE Rostock	study nurse	blood sampling at
Ruum	Tienke	DEI (E ROStoer	study nuise	site
		University of		neuronsychological
Rausch	Lena	Goettingen	psychologist	testing at site
		Goettingen		MRI acquisition and
Rominger	Axel	DZNE Munich	Imaging	processing at site
				neuropsychological
Röske	Sandra	DZNE Bonn	psychologist	testing at
			F - J 8 8 8 8 8 8 8 8 8 8 8 8 8	site/scientist
		Cologne University		medical
Rostamzadeh	Ayda	Medical Center	study physician	examinations at site
				study administration.
Ruß	Christin	DZNE Magdeburg	study nurse	blood sampling at
				site
				study administration,
Sabik	Petr	DZNE Rostock	study nurse	blood sampling at
				site
a 111		University of		medical
Sagebiel	Anne	Goettingen	study physician	examinations at site
	Peter	Rostock University		study administration,
Sänger			Imaging	blood sampling at
		Medical Center		site
Connomonn	Lana	Cologne University	mayahalagiat	neuropsychological
Sannemann	Lena	Medical Center	psychologist	testing at site
Schild	Ann Katrin	Cologne University	nouronevehologist	neuropsychological
Schind	Ann-Kaum	Medical Center	neuropsychologist	testing at site
				study administration,
Schmid	Jennifer	LMU Munich	study nurse	blood sampling at
				site
				study administration,
Schmidt	Monika	DZNE Rostock	study nurse	blood sampling at
				site
Schneider	Christine	DZNE Bonn	study physician	medical
bennerder	Christine		study physician	examinations at site
				study administration,
Schulz	Heike	DZNE Rostock	study nurse	blood sampling at
				site
Schulze	Franziska	DZNE Magdeburg	neuropsychologist	neuropsychological
				testing at site
Schwarzenboeck	Sarah	DZNE Rostock	Imaging	MRI acquisition and
				processing at site
Seegerer	Anna	LMU Munich	psychologist	neuropsychological
				testing at site
Sorgalla	Susanne	Cologne University	Study physician	medical
<i>U</i>	-	Medical Center	51 51 51	examinations at site

Speck	Oliver	DZNE Magdeburg	study scientist/Imaging	MRI acquisition and processing at site/scientific projects
Stephan	Julia	DZNE Munich	psychologist	neuropsychological testing at site
Szagarus	Anna	DZNE Rostock	psychologist	neuropsychological testing at site
Thelen	Manuela	Cologne University Medical Center	coordinator	study administration
Tscheuschler	Maike	Cologne University Medical Center	study physician	medical examinations at site
Villar Munoz	Irene	DZNE Berlin	neuropsychologist	neuropsychological testing at site
Vogt	Ina	DZNE Bonn	study physician	medical examinations at site
Weber	Marc-Andre	Rostock University Medical Center	Imaging	MRI acquisition and processing at site
Werner	Christine	University of Goettingen	study physician	medical examinations at site
Weschke	Sarah	Rostock University Medical Center	psychologist	neuropsychological testing at site
Westerteicher	Christine	University of Bonn	study physician	medical examinations at site
Widmann	catherine	University of Bonn	neuropsychologist	neuropsychological testing at site
Wizenhausen	Janin	University of Goettingen	study physician	medical examinations at site
Yakupov	Renat	DZNE Magdeburg	study scientist/Imaging	various DELOCDE scientific projects
Yilmaz	Sagik	DZNE Bonn	study nurse	study and MRI administration at site,
Zabel	Lioba	DZNE Goettingen	study nurse	study administration, blood sampling at site
Zech	Heike	University of Goettingen	study nurse	study administration, blood sampling at site
Ziegler	Gabriel	DZNE Magdeburg	study scientist/Imaging	various DELOCDE scientific projects
Zollver	Adelgunde	LMU Munich	study nurse	study administration, blood sampling at site

References

- 1. Scarmeas N, Stern Y, Tang MX, Mayeux R, Luchsinger JA. Mediterranean Diet and Risk for Alzheimer's Disease. Annals of neurology. 2006;59: 912-921.
- Lourida I, Soni M, Thompson-Coon J, et al. Mediterranean Diet, Cognitive Function, and Dementia: A Systematic Review. Epidemiology (Cambridge, Mass.). 2013;24:479-89.
- Petersson SD, Philippou E. Mediterranean Diet, Cognitive Function, and Dementia: A Systematic Review of the Evidence. Advances in nutrition (Bethesda, Md.). 2016;7:889–904.
- Francesco Sofi, Francesca Cesari, Rosanna Abbate, Gian Franco Gensini, Alessandro Casini. Adherence to Mediterranean diet and health status: metaanalysis. BMJ. 2008;337:a1344.
- Akbaraly T, Sexton C, Zsoldos E, et al. Association of Long-Term Diet Quality with Hippocampal Volume: Longitudinal Cohort Study. Am J Med. 2018;131:1372-1381.e4.
- Psaltopoulou T, Kyrozis A, Stathopoulos P, Trichopoulos D, Vassilopoulos D, Trichopoulou A. Diet, physical activity and cognitive impairment among elders: the EPIC-Greece cohort (European Prospective Investigation into Cancer and Nutrition). Public health nutrition. 2008;11:1054–1062.
- Valls-Pedret C, Sala-Vila A, Serra-Mir M, et al. Mediterranean Diet and Age-Related Cognitive Decline: A Randomized Clinical Trial. JAMA Intern Med. 2015;175:1094–1103.

- Martínez-Lapiscina EH, Clavero P, Toledo E, et al. Virgin olive oil supplementation and long-term cognition: the PREDIMED-NAVARRA randomized, trial. J Nutr Health Aging. 2013;17:544–552.
- Singh B, Parsaik AK, Mielke MM, et al. Association of mediterranean diet with mild cognitive impairment and Alzheimer's disease: a systematic review and meta-analysis. J Alzheimers Dis. 2014;39:271–282.
- Scarmeas N, Stern Y, Mayeux R, Manly JJ, Schupf N, Luchsinger JA.
 Mediterranean diet and mild cognitive impairment. Arch Neurol. 2009;66:216– 225.
- Matthews DC, Davies M, Murray J, et al. Physical Activity, Mediterranean Diet and Biomarkers-Assessed Risk of Alzheimer's: A Multi-Modality Brain Imaging Study. Adv J Mol Imaging. 2014;4:43–57.
- Mosconi L, Murray J, Tsui WH, et al. Mediterranean Diet and Magnetic Resonance Imaging-Assessed Brain Atrophy in Cognitively Normal Individuals at Risk for Alzheimer's Disease. J Prev Alzheimers Dis. 2014;1:23–32.
- Staubo SC, Aakre JA, Vemuri P, et al. Mediterranean diet, micronutrients and macronutrients, and MRI measures of cortical thickness. Alzheimers Dement. 2017;13:168–177.
- Gu Y, Brickman AM, Stern Y, et al. Mediterranean diet and brain structure in a multiethnic elderly cohort. Neurology. 2015;85:1744–1751.
- 15. Karstens AJ, Tussing-Humphreys L, Zhan L, et al. Associations of the Mediterranean diet with cognitive and neuroimaging phenotypes of dementia in healthy older adults. Am J Clin Nutr. 2019;109:361–368.

- 16. Vassilaki M, Aakre JA, Syrjanen JA, et al. Mediterranean Diet, Its Components, and Amyloid Imaging Biomarkers. J Alzheimers Dis. 2018;64:281–290.
- Berti V, Walters M, Sterling J, et al. Mediterranean diet and 3-year Alzheimer brain biomarker changes in middle-aged adults. Neurology. 2018;90:e1789e1798.
- 18. Hill E, Szoeke C, Dennerstein L, Campbell S, Clifton P. Adherence to the Mediterranean Diet Is not Related to Beta-Amyloid Deposition: Data from the Women's Healthy Ageing Project. J Prev Alzheimers Dis. 2018;5:137–141.
- Merrill DA, Siddarth P, Raji CA, et al. Modifiable Risk Factors and Brain Positron Emission Tomography Measures of Amyloid and Tau in Nondemented Adults with Memory Complaints. The American journal of geriatric psychiatry : official journal of the American Association for Geriatric Psychiatry. 2016;24:729–737.
- Rainey-Smith SR, Gu Y, Gardener SL, et al. Mediterranean diet adherence and rate of cerebral Aβ-amyloid accumulation: Data from the Australian Imaging, Biomarkers and Lifestyle Study of Ageing. Transl Psychiatry. 2018;8:238.
- Jessen F, Spottke A, Boecker H, et al. Design and First Baseline Data of the DZNE Multicenter Observational Study on Predementia Alzheimer's Disease (DELCODE). Alzheimers Res Ther. 2018;10.
- Jessen F, Amariglio RE, van Boxtel M, et al. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer's disease. Alzheimers Dement. 2014;10:844–852.

- Molinuevo JL, Rabin LA, Amariglio R, et al. Implementation of subjective cognitive decline criteria in research studies. Alzheimers Dement. 2017;13:296–311.
- 24. Albert MS, DeKosky ST, Dickson D, et al. The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011;7:270–279.
- 25. Washburn RA, Smith KW, Jette AM, Janney CA. The physical activity scale for the elderly (PASE): Development and evaluation. Journal of Clinical Epidemiology. 1993;46:153–162.
- 26. Wolfsgruber S, Kleineidam L, Guski J, et al. Minor neuropsychological deficits in patients with subjective cognitive decline. Neurology.
- 27. Noethlings U, Hoffmann K, Bergmann MM, Boeing H. Portion Size Adds Limited Information on Variance in Food Intake of Participants in the EPIC-Potsdam Study. The Journal of nutrition. 2003;133.
- Trichopoulou A, Costacou T, Bamia C, Trichopoulos D. Adherence to a Mediterranean diet and survival in a Greek population. N Engl J Med. 2003;348:2599–2608.
- 29. Wiltfang J, Esselmann H, Bibl M, et al. Amyloid beta peptide ratio 42/40 but not
 A beta 42 correlates with phospho-Tau in patients with low- and high-CSF A beta
 40 load. J Neurochem. 2007;101:1053–1059.
- Ashburner J, Friston KJ. Voxel-based morphometry—the methods. Neuroimage. 2000;11:805–821.

- Braak H, Braak E. Staging of alzheimer's disease-related neurofibrillary changes. Neurobiol Aging. 1995;16:271–278.
- Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer's disease at 25 years.
 EMBO Mol Med. 2016;8:595–608.
- 33. Stern Y, Arenaza-Urquijo EM, Bartrés-Faz D, et al. Whitepaper: Defining and investigating cognitive reserve, brain reserve, and brain maintenance. Alzheimers Dement.
- Pelletier A, Barul C, Féart C, et al. Mediterranean diet and preserved brain structural connectivity in older subjects. Alzheimers Dement. 2015;11:1023– 1031.
- 35. Titova OE, Ax E, Brooks SJ, et al. Mediterranean diet habits in older individuals: associations with cognitive functioning and brain volumes. Exp Gerontol. 2013;48:1443–1448.
- 36. L. M. P. Wesselman, D. Melo van Lent, A. Schröder, et al. Dietary patterns are related to cognitive functioning in elderly enriched with individuals at increased risk for Alzheimer's disease. Eur J Nutr:1–12.
- 37. Anastasiou CA, Yannakoulia M, Kosmidis MH, et al. Mediterranean diet and cognitive health: Initial results from the Hellenic Longitudinal Investigation of Ageing and Diet. PLoS ONE. 2017;12:e0182048.
- 38. Loughrey DG, Lavecchia S, Brennan S, Lawlor BA, Kelly ME. The Impact of the Mediterranean Diet on the Cognitive Functioning of Healthy Older Adults: A Systematic Review and Meta-Analysis. Advances in nutrition (Bethesda, Md.). 2017;8:571–586.

- 39. Samieri C, Grodstein F, Rosner BA, et al. Mediterranean diet and cognitive function in older age. Epidemiology (Cambridge, Mass.). 2013;24:490–499.
- 40. Sang Su Kwak, Kevin J. Washicosky, Emma Brand, et al. Amyloid-β42/40 ratio drives tau pathology in 3D human neural cell culture models of Alzheimer's disease. Nat Commun. 2020;11:1–14.
- Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT. Inflammation as a central mechanism in Alzheimer's disease. Alzheimers Dement (N Y). 2018;4:575–590.
- Tosti V, Bertozzi B, Fontana L. Health Benefits of the Mediterranean Diet: Metabolic and Molecular Mechanisms. J Gerontol A Biol Sci Med Sci. 2018;73:318–326.
- Tönnies E, Trushina E. Oxidative Stress, Synaptic Dysfunction, and Alzheimer's Disease. J Alzheimers Dis. 2017;57:1105–1121.
- 44. Qosa H, Mohamed LA, Batarseh YS, et al. Extra-virgin olive oil attenuates amyloid-β and tau pathologies in the brains of TgSwDI mice. J Nutr Biochem. 2015;26:1479–1490.
- 45. Scarmeas N, Luchsinger JA, Schupf N, et al. Physical activity, diet, and risk of Alzheimer disease. JAMA. 2009;302:627–637.
- 46. Wagner M, Grodstein F, Proust-Lima C, Samieri C. Long-Term Trajectories of Body Weight, Diet, and Physical Activity From Midlife Through Late Life and Subsequent Cognitive Decline in Women. Am J Epidemiol. 2020;189:305–313.

- 47. Jin Q, Black A, Kales SN, Vattem D, Ruiz-Canela M, Sotos-Prieto M.Metabolomics and Microbiomes as Potential Tools to Evaluate the Effects of the Mediterranean Diet. Nutrients. 2019;11.
- 48. Albert-László Barabási, Giulia Menichetti, Joseph Loscalzo. The unmapped chemical complexity of our diet. Nat Food. 2020;1:33–37.
- 49. van de Rest O, Am Berendsen A, Haveman-Nies A, Groot LC de. Dietary Patterns, Cognitive Decline, and Dementia: A Systematic Review12. Adv Nutr. 2015;6:154–168.
- 50. Dinu M, Pagliai G, Casini A, Sofi F. Mediterranean diet and multiple health outcomes: an umbrella review of meta-analyses of observational studies and randomised trials. Eur J Clin Nutr. 2018;72:30–43.

Mean	Std	Min	Max	
69.49	5.86	59	86	
14.57	2.91	8	20	
29.10	1.30	18	30	
0.43	0.86	0	7.5	
25.76	3.83	16.00	47.00	
2298.95	743.26	765.10	4954.60	
31.10	11.95	4.67	78.75	
4.53	1.64	0	8	
0.31	0.7	-2.2	3.83	
	Frequen	cies (%)		
27	0/242 (52	.7%/47.3	%)	
143/358 (28.54%/71.46%)				
	431 (8 81 (1:	34.2%) 5.8%)		
	Mean 69.49 14.57 29.10 0.43 25.76 2298.95 31.10 4.53 0.31 27 143	Mean Std 69.49 5.86 14.57 2.91 29.10 1.30 0.43 0.86 25.76 3.83 2298.95 743.26 31.10 11.95 4.53 1.64 0.31 0.7 Frequent 270/242 (52 143/358 (28.3)	MeanStdMin 69.49 5.86 59 14.57 2.91 8 29.10 1.30 18 0.43 0.86 0 25.76 3.83 16.00 2298.95 743.26 765.10 31.10 11.95 4.67 4.53 1.64 0 0.31 0.7 -2.2 Frequencies (%) $270/242$ $(52.7\%/47.3)$ $143/358$ $(28.54\%/71.4)$ 431 (84.2%) 81 (15.8%)	

 Table 1. Demographic and basic clinical characteristics (n=512)

Abbreviations: BMI body mass index; CDR clinical dementia rating; MCI mild cognitive impairment; MEM memory summary factor score; MMSE minimental state examination; PASE: physical activity scale for the elderly [†]incomplete data: 508 cases for BMI, 504 for CDR, 494 for PASE, 501 for APOE-ɛ4 status

	Whole-brain results								
K_E	p(FWE)	p(FDR)	TFCE	p(unc)	x z y				
1339	0.032	0.043	2747.53	0.001	22 - 39 - 14				
	0.035	0.043	2676.16	0.001	22 - 32 - 21				
	0.036	0.043	2670.39	0.002	22 -21 -24				
	ROI-based results								
K_E	p(FWE)	p(FDR)	TFCE	p(unc)	<i>x z y</i>				
2343	0.004	0.007	841.96	< 0.001	22 - 38 - 12				
	0.006	0.007	774.82	< 0.001	38 - 30 - 14				
	0.006	0.007	772.33	< 0.001	22 - 21 - 24				
1366	0.011	0.007	644.53	0.001	-20 -21 -26				
	0.026	0.008	489.51	0.002	-18 -9 -12				
	0.027	0.008	483.28	0.003	-30 -9 -16				

Table 2. MNI coordinates and statistics from neuroimaging analysis

Abbreviations: ROI region of interest; FWE family-wise error rate; FDR false discovery rate; unc uncorrected; K_E equivalent cluster size; TFCE threshold free cluster enhancement value

	Model	Estimate	Standard Error	C.I.	р
	1	0.05	0.02	0.01 - 0.08	0.005
Marrager	2	0.03	0.02	0.00 - 0.07	0.038
Memory	1 + ApoE	0.04	0.02	0.01 - 0.07	0.007
	2 + ApoE	0.04	0.02	0.00 - 0.07	0.031
	1	0.03	0.02	0.00 - 0.06	0.027
Longuaga	2	0.02	0.02	-0.01 - 0.05	0.261
Language	1 + ApoE	0.03	0.02	-0.00 - 0.06	0.055
	2 + ApoE	0.02	0.02	-0.01 - 0.05	0.291
	1	0.01	0.02	-0.02 - 0.04	0.510
Exacutiva Functions	2	0.00	0.02	-0.03 - 0.04	0.866
	1 + ApoE	0.01	0.02	-0.02 - 0.04	0.561
	2 + ApoE	0.00	0.02	-0.03 - 0.04	0.837
	1	0.02	0.02	-0.01 - 0.05	0.254
Working Memory	2	0.02	0.02	-0.02 - 0.05	0.317
	1 + ApoE	0.02	0.02	-0.02 - 0.05	0.327
	2 + ApoE	0.02	0.02	-0.02 - 0.05	0.337
	1	0.02	0.02	-0.01 - 0.05	0.241
Visuospatial abilities	2	0.01	0.02	-0.02 - 0.04	0.482
	1 + ApoE	0.02	0.02	-0.02 - 0.05	0.339
	2 + ApoE	0.01	0.02	-0.02 - 0.04	0.543
	1	-2.26	0.65	-3.540.99	<0.001
nTou191	2	-1.96	0.68	-3.290.63	0.004
prautor	1 + ApoE	-1.89	0.64	-3.150.62	0.004
	2 + ApoE	-1.64	0.67	-2.960.33	0.015
	1	24.24	12.00	0.58 - 47.90	0.045
A 847	2	17.77	12.45	-6.79 – 42.33	0.155
Ар42	1 + ApoE	12.58	11.54	-10.17 - 35.33	0.277
	2 + ApoE	8.16	11.93	-15.36 - 31.68	0.494
	1	0.0034	0.00098	0.00 - 0.01	0.001
	2	0.0027	0.001	0.00 - 0.00	0.008
Αβ42/Αβ40	1 + ApoE	0.0022	0.0009	0.0004 - 0.0039	0.014
	2 + ApoE	0.0017	0.0009	- 0.0001 - 0.0035	0.064
	1	0.94	0.26	0.43 - 1.45	<0.001
1819/nTau101	2	0.71	0.27	0.18 - 1.24	0.009
Ap42/p1au101	1 + ApoE	0.63	0.24	0.16 - 1.09	0.009
	2 + ApoE	0.46	0.25	-0.03 - 0.94	0.063

Table 3. Associations between MeDi score, cognitive outcomes and CSF biomarkers

Results of linear regression models. Covariates in Model 1: age, sex, years of education and in Model 2: age, sex, years of education, BMI, total daily caloric intake, level of physical activity. Model 1 and 2 + ApoE- ε 4 show the results after additionally correcting for ApoE- ε 4 status (carriers or non-carriers).

Abbreviations: C.I. confidence interval

				Controlling for ApoE-ɛ4 status		
	Effect	Estimate	95% Bootstrap CI	Estimate	95% Bootstrap CI	
Model 1	indirect	0.017	(0.007 to 0.030)	0.016	(0.006 to 0.028)	
	direct	0.025	(-0.005 to 0.056)	0.024	(-0.006 to 0.054)	
	total	0.042	(0.009 to 0.075)	0.040	(0.008 to 0.073)	
	%	40%		40%		
Model 2	Indirect	0.109	(0.009 to 0.239)	0.116	(0.025 to 0.249)	
	direct	0.210	(-0.070 to 0.471)	0.195	(-0.094 to 0.473)	
	total	0.319	(0.071 to 0.562)	0.311	(0.048 to 0.580)	
	%	34%		37%		
Model 2.1						
Below	indirect	0.133	(0.011 to 0.308)	0.142	(0.030 to 0.314)	
	%	39%	(42%	(,	
Mean	indirect	0.098	(0.010 to 0.220)	0.105	(0.024 to 0.229)	
	%	32%	· /	35%		
Above	indirect	0.063	(0.008 to 0.172)	0.068	(0.010 to 0.180)	
	%	23%	· /	26%		
	IMM	-0.020	(-0.065 to -0.001)	-0.022	(-0.065 to -0.001)	
Model 2.2						
Below	indirect	0.154	(0.044 to 0.292)	0.164	(0.068 to 0.306)	
	%	51%	· /	54%		
mean	indirect	0.075	(-0.029 to 0.205)	0.083	(-0.008 to 0.214)	
	%	34%	. ,	37%	. ,	
above	indirect	-0.005	(-0.159 to 0.160)	0.002	(-0.142 to 0.160)	
	%	3%		1%		
	IMM	-0.047	(-0.101 to -0.004)	-0.048	(-0.101 to -0.009)	

Table 4. Result of mediation and moderated-mediation models

Effects for the moderated mediation models are shown at different levels of the moderator. Mean: at mean level of MeDi; below and above: at -1 and +1 standard deviations from the mean of MeDi, respectively. Bold text highlights significant paths according to confidence intervals generated with bias corrected bootstrap with 10000 replicates.

Abbreviations: IMM index moderated mediation; % proportion of mediated effect

Legend to Figure 1. Positive association between Mediterranean diet and brain volume

Left panel Positive association between MeDi score and brain gray matter volume at the whole-brain level. *Right panel* Positive association between MeDi score and gray matter volume in *a priori* defined regions of interest covering the bilateral hippocampi and parahippocampal gyri. All results are corrected for age, sex, total intracranial volume and MRI scanner heterogeneity. Results are shown at p<0.05 FWE. Images are displayed in neurological convention: left of the brain on the left of the image. The unthresholded T-map is available at Neurovault (https://neurovault.org/collections/KMIELIOW/).

Legend to Figure 2. Graphical display of mediation and moderated mediation models.

Names of the paths and associated regression estimates are reported. Solid lines represent significant paths according to confidence intervals generated with bias corrected bootstrap with 10000 replicates. Dashed lines mark non-significant regression paths. For *Model 2.1* and *Model 2.2*, in addition to the statistical models, the conceptual models are shown in the upper right corners and simple slopes

representing the interactions effects are shown below. A complete overview of direct and indirect effects is reported in Table 4.

Abbreviations: rGMV regional gray matter volume in bilateral hippocampi and parahippocampi, MeDi Mediterranean diet; MEM memory function; pTau phosphorylated Tau; Aβ42/40 ratio between Aβ42 and Aβ40.