107,495 research outputs found

    Demonstration test of burner liner strain measurements using resistance strain gages

    Get PDF
    A demonstration test of burner liner strain measurements using resistance strain gages as well as a feasibility test of an optical speckle technique for strain measurement are presented. The strain gage results are reported. Ten Kanthal A-1 wire strain gages were used for low cycle fatigue strain measurements to 950 K and .002 apparent strain on a JT12D burner can in a high pressure (10 atmospheres) burner test. The procedure for use of the strain gages involved extensive precalibration and postcalibration to correct for cooling rate dependence, drift, and temperature effects. Results were repeatable within + or - .0002 to .0006 strain, with best results during fast decels from 950 K. The results agreed with analytical prediction based on an axisymmetric burner model, and results indicated a non-uniform circumferential distribution of axial strain, suggesting temperature streaking

    Research pressure instrumentation for NASA Space Shuttle main engine, modification no. 6

    Get PDF
    Research concerning the utilization of silicon piezoresistive strain sensing technology for space shuttle main engine applications is reported. The following specific topics were addressed: (1) transducer design and materials, (2) silicon piezoresistor characterization at cryogenic temperatures, (3) chip mounting characterization, and (4) frequency response optimization

    Computation of three-dimensional nozzle-exhaust flow fields with the GIM code

    Get PDF
    A methodology is introduced for constructing numerical analogs of the partial differential equations of continuum mechanics. A general formulation is provided which permits classical finite element and many of the finite difference methods to be derived directly. The approach, termed the General Interpolants Method (GIM), can combined the best features of finite element and finite difference methods. A quasi-variational procedure is used to formulate the element equations, to introduce boundary conditions into the method and to provide a natural assembly sequence. A derivation is given in terms of general interpolation functions from this procedure. Example computations for transonic and supersonic flows in two and three dimensions are given to illustrate the utility of GIM. A three-dimensional nozzle-exhaust flow field is solved including interaction with the freestream and a coupled treatment of the shear layer. Potential applications of the GIM code to a variety of computational fluid dynamics problems is then discussed in terms of existing capability or by extension of the methodology

    High temperature strain gage technology for hypersonic aircraft development applications

    Get PDF
    An experimental evaluation of Pd 13 percent Cr and of BCL-3 alloy wire strain gages was conducted on IN100 and Cu 0.15 percent Zr alloy substrates. Testing included apparent strain, drift, gage factor, and creep. Maximum test temperature was 1144 K (1600 F). The PdCr gages incorporated Pt temperature compensation elements. The PdCr gages were found to have good resistance stability below 866 K (1100 F). The BCL 3 gages were found to have good resistance stability above 800 K (981 F), but high drift around 700 K (800 F)

    Finite difference grid generation by multivariate blending function interpolation

    Get PDF
    The General Interpolants Method (GIM) code which solves the multidimensional Navier-Stokes equations for arbitrary geometric domains is described. The geometry module in the GIM code generates two and three dimensional grids over specified flow regimes, establishes boundary condition information and computes finite difference analogs for use in the GIM code numerical solution module. The technique can be classified as an algebraic equation approach. The geometry package uses multivariate blending function interpolation of vector-values functions which define the shapes of the edges and surfaces bounding the flow domain. By employing blending functions which conform to the cardinality conditions the flow domain may be mapped onto a unit square (2-D) or unit cube (3-D), thus producing an intrinsic coordinate system for the region of interest. The intrinsic coordinate system facilitates grid spacing control to allow for optimum distribution of nodes in the flow domain

    Effective Hamiltonian for fermions in an optical lattice across Feshbach resonance

    Full text link
    We derive the Hamiltonian for cold fermionic atoms in an optical lattice across a broad Feshbach resonance, taking into account of both multiband occupations and neighboring-site collisions. Under typical configurations, the resulting Hamiltonian can be dramatically simplified to an effective single-band model, which describes a new type of resonance between the local dressed molecules and the valence bond states of fermionic atoms at neighboring sites. On different sides of such a resonance, the effective Hamiltonian is reduced to either a t-J model for the fermionic atoms or an XXZ model for the dressed molecules. The parameters in these models are experimentally tunable in the full range, which allows for observation of various phase transitions.Comment: 5 pages, 2 figure

    Air cushion vehicles: A briefing

    Get PDF
    Experience and characteristics; the powering, uses, and implications of large air cushion vehicles (ACV); and the conceptual design and operation of a nuclear powered ACV freighter and supporting facilities are described

    Small Fermi energy, zero point fluctuations and nonadiabaticity in MgB2_2

    Full text link
    Small Fermi energy effects are induced in MgB2_2 by the low hole doping in the σ\sigma bands which are characterized by a Fermi energy EFσ0.5E_{\rm F}^\sigma \sim 0.5 eV. We show that, due to the particularly strong deformation potential relative to the E2gE_{2g} phonon mode, lattice fluctuations are reflected in strong fluctuations in the electronic band structure. Quantum fluctuations associated to the zero-point lattice motion are responsible for an uncertainty of the Fermi energy of the order of the Fermi energy itself, leading to the breakdown of the adiabatic principle underlying the Born-Oppenheimer approximation in MgB2_2 even if ωph/EF0.10.2\omega_{\rm ph}/E_{\rm F} \sim 0.1-0.2, where ωph\omega_{\rm ph} are the characteristic phonon frequencies. This amounts to a new nonadiabatic regime, which could be relevant to other unconventional superconductors.Comment: to appear on Physical Review

    Rice World Market Prices

    Get PDF
    The marketing loan program associated with rice features benefits calculated using a USDA-announced World Market Price (WMP) rather than the posted county prices that are used for most other commodities. This results in reduced risk protection for producers relative to other crops, and greater difficulty in making optimal use of program benefits. This research investigates the rice WMP, identifying the relative importance of various foreign prices and other potential influencing factors. The results of this research have important implications for financial planning and optimal risk management strategies for rice producers.Agricultural and Food Policy,
    corecore