10 research outputs found

    Engineered biochar – A sustainable solution for the removal of antibiotics from water

    Get PDF
    Antibiotic contamination and the spread of antimicrobial resistant bacteria are global environmental issues. Given the growing consumption of antibiotics, it is crucial to reduce their presence in the environment. Adsorption is one of the most efficient methods for removing contaminants from water and wastewater. For this process to be effective, it is of key importance to identify adsorption mechanisms that allow an efficient and selective adsorbent to be chosen. Carbon-based materials (including activated carbon, biochar and black carbon) are typically used for the adsorptive removal of antibiotics. To enhance the efficiency of adsorption of pharmaceuticals, engineered biochars (physically, chemically and biologically modified biochar) and their composites have attracted increasing interests. Biochar-based sorbents can be produced from various feedstocks, including waste products. The use of “green”, low cost or sustainable biochar for contaminant sorption yields economic and environmental benefits. Moreover, this is in line with global trends in creating a circular economy and sustainable development. This paper collates the most recent data on the consumption of antibiotics, their related environmental contamination, and their removal using biochar-based materials. Special attention is paid to the newly emerging approaches of biochar modification and biochar composites in relation to the antibiotic removal from water. © 2020 Elsevier B.V

    Controlled Porosity of MCM-41 Obtained by Partial Blocking of Pores by Silicon Oil

    No full text
    Partial blocking of mesopores in the ordered MCM-41 silica by DC550 silicon oil was proposed as a preparation method of the material with controlled porosity and fixed pore size. The porosity of the samples with various content of DC550 was examined with the use of low temperature nitrogen sorption and positron annihilation lifetime spectroscopy. It was shown that the oil blocks the primary pores by forming the plugs near its entrances, but also partially locates in the interparticle spaces. The comparison of the results obtained from both investigation techniques was used to make the first attempt to obtain the calibration of ortho-positronium intensity, depending on pore volume. This is necessary to improve the utility of positron annihilation lifetime spectroscopy as a porosimetric technique. The need to take the migration of positronium to larger free volume into account is discussed

    Controlled Porosity of MCM-41 Obtained by Partial Blocking of Pores by Silicon Oil

    No full text
    Partial blocking of mesopores in the ordered MCM-41 silica by DC550 silicon oil was proposed as a preparation method of the material with controlled porosity and fixed pore size. The porosity of the samples with various content of DC550 was examined with the use of low temperature nitrogen sorption and positron annihilation lifetime spectroscopy. It was shown that the oil blocks the primary pores by forming the plugs near its entrances, but also partially locates in the interparticle spaces. The comparison of the results obtained from both investigation techniques was used to make the first attempt to obtain the calibration of ortho-positronium intensity, depending on pore volume. This is necessary to improve the utility of positron annihilation lifetime spectroscopy as a porosimetric technique. The need to take the migration of positronium to larger free volume into account is discussed

    Assigning defined daily/course doses for antimicrobials in turkeys to enable a cross-country quantification and comparison of antimicrobial use

    No full text
    Antimicrobial resistance (AMR) threatens our public health and is mainly driven by antimicrobial usage (AMU). For this reason the World Health Organization calls for detailed monitoring of AMU over all animal sectors involved. Therefore, we aimed to quantify AMU on turkey farms. First, turkey-specific Defined Daily Dose (DDDturkey) was determined. These were compared to the broiler alternative from the European Surveillance of Veterinary Antimicrobial Consumption (DDDvet), that mention DDDvet as a proxy for other poultry species. DDDturkey ranged from being 81.5% smaller to 48.5% larger compared to its DDDvet alternative for broilers. Second, antimicrobial treatments were registered on 60 turkey farms divided over France, Germany and Spain between 2014 and 2016 (20 flocks per country). Afterwards, AMU was quantified using treatment incidence (TI) per 100 days. TI expresses the percentage of the rearing period that the turkeys were treated with a standard dose of antimicrobials. Minimum, median and maximum TI at flock level and based on DDDturkey = 0.0, 10.0 and 65.7, respectively. Yet, a huge variation in amounts of antimicrobials used at flock level was observed, both within and between countries. Seven farms (12%) did not use any antimicrobials. Aminopenicillins, polymyxins, and fluoroquinolones were responsible for 72.2% of total AMU. The proportion of treating farms peaked on week five of the production cycle (41.7%), and 79.4% of the total AMU was administered in the first half of production. To conclude, not all DDDvet values for broilers can be applied to turkeys. Additionally, the results of AMU show potential for reducing and improving AMU on turkey farms, especially concerning the usage of critically important antimicrobials

    Quantitative and qualitative analysis of antimicrobial usage at farm and flock level on 181 broiler farms in nine European countries

    No full text
    International audienceObjectives: To control the emerging threat of antimicrobial resistance, international policy appeals for appropriate monitoring of antimicrobial usage (AMU) at supranational, species and farm level. The aim of this study was to quantify AMU in broilers at farm and flock level in nine European countries

    Quantitative and qualitative analysis of antimicrobial usage patterns in 180 selected farrow-to-finish pig farms from nine European countries based on single batch and purchase data

    No full text
    Objectives Farm-level quantification of antimicrobial usage (AMU) in pig farms. Methods In a cross-sectional study, AMU data on group treatments administered to a single batch of fattening pigs from birth to slaughter (group treatment data) and antimicrobials purchased during 1year (purchase data) were collected at 180 pig farms in nine European countries. AMU was quantified using treatment incidence (TI) based on defined (DDDvet) and used (UDDvet) daily doses and defined (DCDvet) and used (UCDvet) course doses. Results The majority of antimicrobial group treatments were administered to weaners (69.5% of total TIDDDvet) followed by sucklers (22.5% of total TIDDDvet). AMU varied considerably between farms with a median TIDDDvet of 9.2 and 7.1 for a standardized rearing period of 200days based on group treatment and purchase data, respectively. In general, UDDvet and UCDvet were higher than DDDvet and DCDvet, respectively, suggesting that either the defined doses were set too low or that group treatments were often dosed too high and/or administered for too long. Extended-spectrum penicillins (31.2%) and polymyxins (24.7%) were the active substances most often used in group treatments, with the majority administered through feed or water (82%). Higher AMU at a young age was associated with higher use in older pigs. Conclusions Collecting farm-level AMU data of good quality is challenging and results differ based on how data are collected (group treatment data versus purchase data) and reported (defined versus used daily and course doses)
    corecore