184 research outputs found

    Application of product dioids for dead token detection in interval P-time event graphs

    Get PDF
    Linear description of interval P-time event graphs using a product idempotent semiring is proposed and applied to dead token detection. The dependence of dead token on initial condition is studied using residuation theory. Finally, the relationship with the spectral theory of matrices over product semirings is discusse

    Association of Psb28 and Psb27 proteins with PSII-PSI supercomplexes upon exposure of Synechocystis sp. PCC 6803 to high light

    Get PDF
    Formation of the multi-subunit oxygen-evolving Photosystem II (PSII) complex involves a number of auxiliary protein factors. In this study we compared the location and possible function of two homologous PSII assembly factors, Psb28-1 and Psb28-2, from the cyanobacterium Synechocystis sp. PCC 6803. We show that FLAG-tagged Psb28-2 is present in both the monomeric PSII core complex and a PSII core complex lacking the inner antenna CP43 (RC47) whereas Psb28-1 preferentially binds to RC47. When cells are exposed to increased irradiance, both tagged Psb28 proteins now associate with oligomeric forms of PSII and with PSII-PSI supercomplexes composed of trimeric Photosystem I (PSI) and two PSII monomers as deduced from negative stain electron microscopy. The presence of the Psb27 accessory protein in these complexes suggests the involvement of PSI in PSII biogenesis, possibly by photoprotecting PSII through energy spillover. Under standard cultivation conditions the distribution of PSII complexes is similar in WT and each of the single psb28 null mutants except for loss of RC47 in the absence of Psb28-1. In comparison with WT, growth of mutants lacking Psb28-1 and Psb27, but not Psb28-2, was retarded under high-light and, especially, intermittent highlight-dark conditions, emphasizing the physiological importance of PSII assembly factors for light acclimation

    Deposition of Thin Electroconductive Layers of Tin (II) Sulfide on the Copper Surface Using the Hydrometallurgical Method: Electrical and Optical Studies

    Get PDF
    Thin films of tin (II) sulfide (SnS) were deposited onto a 500 µm thick copper substrate by a chemical bath method. The effect of sodium (Na) doping in these films was studied. The synthesis of the films was performed at temperatures of 60, 70, and 80 °C for 5 min. The microstructure of the SnS films analyzed by scanning electron microscopy (SEM) showed a compact morphology of the films deposited at 80 °C. The edges of the SnS grains were rounded off with the addition of a commercial surfactant. The thickness of different SnS layers deposited on the copper substrate was found to be 230 nm from spectroscopic ellipsometry and cross-section analysis using SEM. The deposition parameters such as temperature, surfactant addition, and sodium doping time did not affect the thickness of the layers. From the X-ray diffraction (XRD) analysis, the size of the SnS crystallites was found to be around 44 nm. Depending on the process conditions, Na doping affects the size of the crystallites in different ways. A study of the conductivity of SnS films provides a specific conductivity value of 0.3 S. The energy dispersive analysis of X-rays (EDAX) equipped with the SEM revealed the Sn:S stoichiometry of the film to be 1:1, which was confirmed by the X-ray photoelectron spectroscopy (XPS) analysis. The determined band-gap of SnS is equal to 1.27 eV and is in good agreement with the literature data

    International practice patterns and factors associated with non-conventional hemodialysis utilization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of our study was to determine characteristics that influence the utilization of non-conventional hemodialysis (NCHD) therapies and its subtypes (nocturnal (NHD), short daily (SDHD), long conventional (LCHD) and conventional hemodialysis (CHD) as well as provider attitudes regarding the evidence for NCHD use.</p> <p>Methods</p> <p>An international cohort of subscribers of a nephrology education website <url>http://www.nephrologynow.com</url> was invited to participate in an online survey. Non-conventional hemodialysis was defined as any forms of hemodialysis delivered > 3 treatments per week and/or > 4 hours per session. NHD and SDHD included both home and in-centre. Respondents were categorized as CHD if their centre only offered conventional thrice weekly hemodialysis. Variables associated with NCHD and its subtypes were determined using multivariate logistic regression analysis. The survey assessed multiple domains regarding NCHD including reasons for initiating and discontinuing, for not offering and attitudes regarding evidence.</p> <p>Results</p> <p>544 surveys were completed leading to a 15.6% response rate. The final cohort was limited to 311 physicians. Dialysis modalities utilized among the respondents were as follows: NCHD194 (62.4%), NHD 83 (26.7%), SDHD 107 (34.4%), LCHD 81 (26%) and CHD 117 (37.6%). The geographic regions of participants were as follows: 11.9% Canada, 26.7% USA, 21.5% Europe, 6.1% Australia/New Zealand, 10% Africa/Middle East, 10.9% Asia and 12.9% South America. Variables associated with NCHD utilization included NCHD training (OR 2.47 CI 1.25-4.16), government physician reimbursement (OR 2.66, CI 1.11-6.40), practicing at an academic centre (OR 2.28 CI 1.25-4.16), higher national health care expenditure and number of ESRD patients per centre. Hemodialysis providers with patients on NCHD were significantly more likely to agree with the statements that NCHD improves quality of life, improves nutritional status, reduces EPO requirements and is cost effective. The most common reasons to initiate NCHD were driven by patient preference and the desire to improve volume control and global health outcomes.</p> <p>Conclusion</p> <p>Physician attitudes toward the evidence for NCHD differ significantly between NCHD providers and conventional HD providers. Interventions and health policy targeting these areas along with increased physician education and training in NCHD modalities may be effective in increasing its utilization.</p

    Structure of Psb29/Thf1 and its association with the FtsH protease complex involved in photosystem II repair in cyanobacteria

    Get PDF
    One strategy for enhancing photosynthesis in crop plants is to improve the ability to repair photosystem II (PSII) in response to irreversible damage by light. D espite the pivotal role of thylakoid embedded FtsH protease complexes in the selective degradation of PSII subunits during repair, little is known about the factors involved in regulating FtsH exp ression. Here we show using the cyanobacterium Synechocystis sp. PCC 6803 that the Psb29 subunit, originally identified as a minor component of His tagged PSII preparations, physically interacts with FtsH complexes in vivo and is required for normal accumulation of the FtsH2/FtsH3 hetero oligo meric complex involved in PSII repair. We show using X ray crystallography that Psb29 from Thermosynechococcus elongatus has a unique fold consisting of a helical bundle and an extended C terminal heli x and contains a highly conserved region that might be involved in binding to FtsH. A similar interaction is likely to occur in Arabidopsis chloroplasts between the Psb29 homologue, termed THF1, and the FTSH2/FTSH5 complex. The direct involvement of Psb29/THF1 in Ft sH accumulation helps explain why THF1 is a target during the hypersensitive response in plants induced by pathogen i nfection. Downregulating FtsH function and the PSII repair cycle via THF1 would cont ribute to the productio

    A photosynthesis-specific rubredoxin-like protein is required for efficient association of the D1 and D2 proteins during the initial steps of photosystem II assembly

    Get PDF
    Oxygenic photosynthesis relies on accessory factors to promote the assembly and maintenance of the photosynthetic apparatus in the thylakoid membranes. The highly conserved membrane-bound rubredoxin-like protein RubA has previously been implicated in the accumulation of both photosystem I (PSI) and photosystem II (PSII) but its mode of action remains unclear. Here we show that RubA in the cyanobacterium Synechocystis sp. PCC 6803 is required for photoautotrophic growth in fluctuating light and acts early in PSII biogenesis by promoting the formation of the heterodimeric D1/D2 reaction center complex, the site of primary photochemistry. We find that RubA, like the accessory factor Ycf48, is a component of the initial D1 assembly module as well as larger PSII assembly intermediates and that the redox-responsive rubredoxinlike domain is located on the cytoplasmic surface of PSII complexes. Fusion of RubA to Ycf48 still permits normal PSII assembly suggesting a spatiotemporal proximity of both proteins during their action. RubA is also important for the accumulation of PSI but this is an indirect effect stemming from the downregulation of light-dependent chlorophyll biosynthesis induced by PSII deficiency. Overall our data support the involvement of RubA in the redox control of PSII biogenesis

    Unexpected random urinary protein:creatinine ratio results-limitations of the pyrocatechol violet-dye method.

    Get PDF
    BACKGROUND: For clinicians, it is important to rely on accurate laboratory results for patient care and optimal use of health care resources. We sought to explore our observations that urine protein:creatinine ratios (PrCr) ≥30 mg/mmol are seen not infrequently associated with normal pregnancy outcome. METHODS: Urine samples were collected prospectively from 160 pregnant women attending high-risk maternity clinics at a tertiary care facility. Urinary protein was measured using a pyrocatechol violet assay and urinary creatinine by an enzymatic method on Vitros analysers. Maternal/perinatal outcomes were abstracted from hospital records. RESULTS: 91/233 (39.1%) samples had a PrCr ≥30 mg/mmol, especially when urinary creatinine concentration was <3 mM (94.1%) vs. ≥3 mM (16.4%) (p < 0.001). When using the last sample before delivery, 47/160 (29.4%) had a PrCr ≥30 mg/mmol in diluted urine vs. only 17/160 (15.4%) in more concentrated urine (p < 0.001); PrCr positive results were also more frequent among the 32 (20.0%) women with known normal pregnancy outcome (90.9% vs. 0) (p < 0.001). Using the same analyser, 0.12 g/L urinary protein was 'detected' in deionised water. Re-analysis of data from two cohorts revealed substantially less inflation of PrCr in dilute urine using a pyrogallol red assay. CONCLUSIONS: Random urinary PrCr was overestimated in dilute urine when tested using a common pyrocatechol violet dye-based method. This effect was reduced in cohorts when pyrogallol red assays were used. False positive results can impact on diagnosis and patient care. This highlights the need for both clinical and laboratory quality improvement projects and standardization of laboratory protein measurement

    FtsH4 protease controls the biogenesis of PSII complex by dual regulation of high light-inducible proteins

    Get PDF
    FtsH proteases are membrane-embedded proteolytic complexes important for protein quality control and regulation of various physiological processes in bacteria, mitochondria, and chloroplasts. Like most cyanobacteria, the model species Synechocystis sp. PCC 6803 contains four FtsH homologs, FtsH1-FtsH4. FtsH1-3 form two hetero-oligomeric complexes, FtsH1/3 and FtsH2/3, that play a pivotal role in acclimation to nutrient deficiency and photosystem II quality control, respectively. FtsH4 differs from the other three homologs by the formation of a homo-oligomeric complex and together with Arabidopsis thaliana AtFtsH7/9 orthologs, it has been assigned to another phylogenetic group of unknown function. Our results exclude the possibility that Synechocystis FtsH4 structurally or functionally substitutes for the missing or non-functional FtsH2 subunit in the FtsH2/3 complex. On the other hand, we demonstrate that FtsH4 is involved in the biogenesis of photosystem II by dual regulation of high light-inducible proteins (Hlips). FtsH4 positively regulates expression of Hlips shortly after high light exposure but is also responsible for Hlips removal under conditions when their elevated levels are no longer needed. We provide experimental support for Hlips as proteolytic substrates of FtsH4. The fluorescent labeling of FtsH4 allowed us to assess its localization using advanced microscopic techniques. Results show that FtsH4 complexes are concentrated in well-defined membrane regions at the inner and outer periphery of the thylakoid system. Based on the identification of proteins that co-purified with the tagged FtsH4 we speculate that FtsH4 concentrates in special compartments in which the biogenesis of photosynthetic complexes takes place

    Bicistronic Lentiviruses Containing a Viral 2A Cleavage Sequence Reliably Co-Express Two Proteins and Restore Vision to an Animal Model of LCA1

    Get PDF
    The disease processes underlying inherited retinal disease are complex and are not completely understood. Many of the corrective gene therapies designed to treat diseases linked to mutations in genes specifically expressed in photoreceptor cells restore function to these cells but fail to stop progression of the disease. There is growing consensus that effective treatments for these diseases will require delivery of multiple therapeutic proteins that will be selected to treat specific aspects of the disease process. The purpose of this study was to design a lentiviral transgene that reliably expresses all of the proteins it encodes and does so in a consistent manner among infected cells. We show, using both in vitro and in vivo analyses, that bicistronic lentiviral transgenes encoding two fluorescent proteins fused to a viral 2A-like cleavage peptide meet these expression criteria. To determine if this transgene design is suitable for therapeutic applications, we replaced one of the fluorescent protein genes with the gene encoding guanylate cyclase -1 (GC1) and delivered lentivirus carrying this transgene to the retinas of the GUCY1*B avian model of Leber congenital amaurosis – 1 (LCA1). GUCY1*B chickens carry a null mutation in the GC1 gene that disrupts photoreceptor function and causes blindness at hatching, a phenotype that closely matches that observed in humans with LCA1. We found that treatment of these animals with the 2A lentivector encoding GC1 restored vision to these animals as evidenced by the presence of optokinetic reflexes. We conclude that 2A-like peptides, with proper optimization, can be successfully incorporated into therapeutic vectors designed to deliver multiple proteins to neural retinal. These results highlight the potential of this vector design to serve as a platform for the development of combination therapies designed to enhance or prolong the benefits of corrective gene therapies

    Non-Photochemical Quenching in Cryptophyte Alga Rhodomonas salina Is Located in Chlorophyll a/c Antennae

    Get PDF
    Photosynthesis uses light as a source of energy but its excess can result in production of harmful oxygen radicals. To avoid any resulting damage, phototrophic organisms can employ a process known as non-photochemical quenching (NPQ), where excess light energy is safely dissipated as heat. The mechanism(s) of NPQ vary among different phototrophs. Here, we describe a new type of NPQ in the organism Rhodomonas salina, an alga belonging to the cryptophytes, part of the chromalveolate supergroup. Cryptophytes are exceptional among photosynthetic chromalveolates as they use both chlorophyll a/c proteins and phycobiliproteins for light harvesting. All our data demonstrates that NPQ in cryptophytes differs significantly from other chromalveolates – e.g. diatoms and it is also unique in comparison to NPQ in green algae and in higher plants: (1) there is no light induced xanthophyll cycle; (2) NPQ resembles the fast and flexible energetic quenching (qE) of higher plants, including its fast recovery; (3) a direct antennae protonation is involved in NPQ, similar to that found in higher plants. Further, fluorescence spectroscopy and biochemical characterization of isolated photosynthetic complexes suggest that NPQ in R. salina occurs in the chlorophyll a/c antennae but not in phycobiliproteins. All these results demonstrate that NPQ in cryptophytes represents a novel class of effective and flexible non-photochemical quenching
    corecore