8,252 research outputs found
High-efficiency cluster-state generation with atomic ensembles via the dipole-blockade mechanism
We demonstrate theoretically a scheme for cluster-state generation, based on atomic ensembles and the dipole-blockade mechanism. In the protocol, atomic ensembles serve as single-qubit systems. Therefore, we review single-qubit operations on qubit defined as collective states of atomic ensemble. Our entangling protocol requires nearly identical single-photon sources, one ultracold ensemble per physical qubit, and regular photodetectors. The general entangling procedure is presented, as well as a procedure that generates in a single step Q-qubit GHZ states with success probability p(success) similar to eta(Q/2), where eta is the combined detection and source efficiency. This is significantly more efficient than any known robust probabilistic entangling operation. GHZ states form the basic building block for universal cluster states, a resource for the one-way quantum computer
A Quantum Rosetta Stone for Interferometry
Heisenberg-limited measurement protocols can be used to gain an increase in
measurement precision over classical protocols. Such measurements can be
implemented using, e.g., optical Mach-Zehnder interferometers and Ramsey
spectroscopes. We address the formal equivalence between the Mach-Zehnder
interferometer, the Ramsey spectroscope, and the discrete Fourier transform.
Based on this equivalence we introduce the ``quantum Rosetta stone'', and we
describe a projective-measurement scheme for generating the desired
correlations between the interferometric input states in order to achieve
Heisenberg-limited sensitivity. The Rosetta stone then tells us the same method
should work in atom spectroscopy.Comment: 8 pages, 4 figure
Preparing multi-partite entanglement of photons and matter qubits
We show how to make event-ready multi-partite entanglement between qubits
which may be encoded on photons or matter systems. Entangled states of matter
systems, which can also act as single photon sources, can be generated using
the entangling operation presented in quant-ph/0408040. We show how to entangle
such sources with photon qubits, which may be encoded in the dual rail,
polarization or time-bin degrees of freedom. We subsequently demonstrate how
projective measurements of the matter qubits can be used to create entangled
states of the photons alone. The state of the matter qubits is inherited by the
generated photons. Since the entangling operation can be used to generate
cluster states of matter qubits for quantum computing, our procedure enables us
to create any (entangled) photonic quantum state that can be written as the
outcome of a quantum computer.Comment: 10 pages, 4 figures; to appear in Journal of Optics
The creation of large photon-number path entanglement conditioned on photodetection
Large photon-number path entanglement is an important resource for enhanced
precision measurements and quantum imaging. We present a general constructive
protocol to create any large photon number path-entangled state based on the
conditional detection of single photons. The influence of imperfect detectors
is considered and an asymptotic scaling law is derived.Comment: 6 pages, 4 figure
Super-resolving multi-photon interferences with independent light sources
We propose to use multi-photon interferences from statistically independent
light sources in combination with linear optical detection techniques to
enhance the resolution in imaging. Experimental results with up to five
independent thermal light sources confirm this approach to improve the spatial
resolution. Since no involved quantum state preparation or detection is
required the experiment can be considered an extension of the Hanbury Brown and
Twiss experiment for spatial intensity correlations of order N>2
A Study on Edge-Set Graphs of Certain Graphs
Let be a simple connected graph, with In this
paper, we define an edge-set graph constructed from the graph
such that any vertex of corresponds to the -th
-element subset of and any two vertices of
are adjacent if and only if there is at least one edge in the
edge-subset corresponding to which is adjacent to at least one edge
in the edge-subset corresponding to where are positive
integers. It can be noted that the edge-set graph of a graph
id dependent on both the structure of as well as the number of edges
We also discuss the characteristics and properties of the edge-set
graphs corresponding to certain standard graphs.Comment: 10 pages, 2 figure
Unifying parameter estimation and the Deutsch-Jozsa algorithm for continuous variables
We reveal a close relationship between quantum metrology and the Deutsch-Jozsa algorithm on continuous-variable quantum systems. We develop a general procedure, characterized by two parameters, that unifies parameter estimation and the Deutsch-Jozsa algorithm. Depending on which parameter we keep constant, the procedure implements either the parameter-estimation protocol or the Deutsch-Jozsa algorithm. The parameter-estimation part of the procedure attains the Heisenberg limit and is therefore optimal. Due to the use of approximate normalizable continuous-variable eigenstates, the Deutsch-Jozsa algorithm is probabilistic. The procedure estimates a value of an unknown parameter and solves the Deutsch-Jozsa problem without the use of any entanglement
- …