299 research outputs found

    Ultrafast dynamics of occupied quantum well states in Pb/Si(111)

    No full text
    We investigate the ultrafast electron dynamics of occupied quantum well states (QWSs) in Pb/Si(111) with time-resolved photoemission spectroscopy. We find an ultrafast increase in binding energy of the QWSs driven by the optical excitation, while the electronic system is in a non-equilibrium state. We explain this transient energetic stabilization in the photoexcited state by an ultrafast modification of the Fermi level pinning, triggered by charge transfer across the Pb/Si interface. In addition, we observe the excitation of a coherent surface phonon mode at a frequency of ~2 THz, which modulates the QWS binding energy

    Mode-selective coupling of coherent phonons to the Bi2212 electronic band structure

    Full text link
    Cuprate superconductors host a multitude of low-energy optical phonons. Using time- and angle-resolved photoemission spectroscopy, we study coherent phonons in Bi2_{2}Sr2_{2}Ca0.92_{0.92}Y0.08_{0.08}Cu2_{2}O8+δ_{8+\delta}. Sub-meV modulations of the electronic band structure are observed at frequencies of 3.94±0.013.94\pm 0.01 and 5.59±0.065.59\pm 0.06 THz. For the dominant mode at 3.94 THz, the amplitude of the band energy oscillation weakly increases as a function of momentum away from the node. Theoretical calculations allow identifying the observed modes as CuO2_{2}-derived A1gA_{1g} phonons. The Bi- and Sr-derived A1gA_{1g} modes which dominate Raman spectra in the relevant frequency range are absent in our measurements. This highlights the mode-selectivity for phonons coupled to the near-Fermi-level electrons, which originate from CuO2_{2} planes and dictate thermodynamic properties.Comment: 7 pages, 3 figure

    Ultrafast Optical Excitation of a Persistent Surface-State Population in the Topological Insulator Bi2Se3

    Full text link
    Using femtosecond time- and angle- resolved photoemission spectroscopy, we investigated the nonequilibrium dynamics of the topological insulator Bi2Se3. We studied p-type Bi2Se3, in which the metallic Dirac surface state and bulk conduction bands are unoccupied. Optical excitation leads to a meta-stable population at the bulk conduction band edge, which feeds a nonequilibrium population of the surface state persisting for >10ps. This unusually long-lived population of a metallic Dirac surface state with spin texture may present a channel in which to drive transient spin-polarized currents

    Imaginary-time quantum many-body theory out of equilibrium I: Formal equivalence to Keldysh real-time theory and calculation of static properties

    Full text link
    We discuss the formal relationship between the real-time Keldysh and imaginary-time theory for nonequilibrium in quantum dot systems. The latter can be reformulated using the recently proposed Matsubara voltage approach. We establish general conditions for correct analytic continuation procedure on physical observables, and apply the technique to the calculation of static quantities in steady-state non-equilibrium for a quantum dot subject to a finite bias voltage and external magnetic field. Limitations of the Matsubara voltage approach are also pointed out.Comment: 24 pages, 10 figure

    Persistent order due to transiently enhanced nesting in an electronically excited charge density wave

    Get PDF
    Non-equilibrium conditions may lead to novel properties of materials with broken symmetry ground states not accessible in equilibrium as vividly demonstrated by non-linearly driven mid-infrared active phonon excitation. Potential energy surfaces of electronically excited states also allow to direct nuclear motion, but relaxation of the excess energy typically excites fluctuations leading to a reduced or even vanishing order parameter as characterized by an electronic energy gap. Here, using femtosecond time- and angle-resolved photoemission spectroscopy, we demonstrate a tendency towards transient stabilization of a charge density wave after near-infrared excitation, counteracting the suppression of order in the non-equilibrium state. Analysis of the dynamic electronic structure reveals a remaining energy gap in a highly excited transient state. Our observation can be explained by a competition between fluctuations in the electronically excited state, which tend to reduce order, and transiently enhanced Fermi surface nesting stabilizing the order
    • …
    corecore