1,451 research outputs found

    Andreev bound states and π\pi -junction transition in a superconductor / quantum-dot / superconductor system

    Full text link
    We study Andreev bound states and π\pi -junction transition in a superconductor / quantum-dot / superconductor (S-QD-S) system by Green function method. We derive an equation to describe the Andreev bound states in S-QD-S system, and provide a unified understanding of the π\pi -junction transition caused by three different mechanisms: (1) {\it Zeeman splitting.} For QD with two spin levels EE_{\uparrow} and EE_{\downarrow}, we find that the surface of the Josephson current I(ϕ=π2)I(\phi =\frac \pi 2) vs the configuration of (E,E)(E_{\uparrow},E_{\downarrow}) exhibits interesting profile: a sharp peak around E=E=0E_{\uparrow}=E_{\downarrow}=0; a positive ridge in the region of EE>0E_{\uparrow}\cdot E_{\downarrow}>0; and a {\em % negative}, flat, shallow plain in the region of EE<0E_{\uparrow}\cdot E_{\downarrow}<0. (2){\it \ Intra-dot interaction.} We deal with the intra-dot Coulomb interaction by Hartree-Fock approximation, and find that the system behaves as a π\pi -junction when QD becomes a magnetic dot due to the interaction. The conditions for π\pi -junction transition are also discussed. (3) {\it \ Non-equilibrium distribution.} We replace the Fermi distribution f(ω)f(\omega) by a non-equilibrium one 12[f(ωVc)+f(ω+Vc)]\frac 12[ f(\omega -V_c)+f(\omega +V_c)] , and allow Zeeman splitting in QD where % E_{\uparrow}=-E_{\downarrow}=h. The curves of I(ϕ=π2)I(\phi =\frac \pi 2) vs % V_c show the novel effect of interplay of non-equilibrium distribution with magnetization in QD.Comment: 18 pages, 8 figures, Late

    Accurate simulation of direct laser acceleration in a laser wakefield accelerator

    Full text link
    In a laser wakefield accelerator (LWFA), an intense laser pulse excites a plasma wave that traps and accelerates electrons to relativistic energies. When the pulse overlaps the accelerated electrons, it can enhance the energy gain through direct laser acceleration (DLA) by resonantly driving the betatron oscillations of the electrons in the plasma wave. The particle-in-cell (PIC) algorithm, although often the tool of choice to study DLA, contains inherent errors due to numerical dispersion and the time staggering of the electric and magnetic fields. Further, conventional PIC implementations cannot reliably disentangle the fields of the plasma wave and laser pulse, which obscures interpretation of the dominant acceleration mechanism. Here, a customized field solver that reduces errors from both numerical dispersion and time staggering is used in conjunction with a field decomposition into azimuthal modes to perform PIC simulations of DLA in an LWFA. Comparisons with traditional PIC methods, model equations, and experimental data show improved accuracy with the customized solver and convergence with an order-of-magnitude fewer cells. The azimuthal-mode decomposition reveals that the most energetic electrons receive comparable energy from DLA and LWFA.Comment: 10 pages, 5 figures, to submit to Physics of Plasma

    Excess Kondo resonance in a quantum dot device with normal and superconducting leads: the physics of Andreev-normal co-tunneling

    Full text link
    We report on a novel Kondo phenomenon of interacting quantum dots coupled asymmetrically to a normal and a superconducting lead. The effects of intradot Coulomb interaction and Andreev tunneling give rise to Andreev bound resonances. As a result, a new type of co-tunneling process which we term Andreev-normal co-tunneling, is predicted. At low temperatures, coherent superposition of these co-tunneling processes induces a Kondo effect in which Cooper pairs directly participate formation of a spin singlet, leading to four Kondo resonance peaks in the local density of states, and enhancing the tunneling current.Comment: 4 pages, 2 figures, Late

    Flow structure and performance of axisymmetric synthetic jets

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77189/1/AIAA-2001-1008-312.pd

    Extraordinary Temperature Dependence of the Resonant Andreev Reflection

    Full text link
    An extraordinary temperature dependence of the resonant Andreev reflection via discrete energy level in a normal-metal / quantum-dot / superconductor (N-QD-S) system is predicted theoretically by using Green function technique. The width of zero bias conductance peak in N-QD-S is about ΓL2+ΓR2\sqrt{\Gamma _L^2+\Gamma_R^2} and does not exhibit thermal broadening, where ΓL\Gamma_L and ΓR\Gamma_R are the coupling strength between QD and leads. Considering the intra-dot Coulomb interaction, the Coulomb blockade oscillations conducted by Andreev reflection differs dramatically from that in N-QD-N. Instead of thermal broadening, finite temperature induces more resonant peaks around the oscillation peaks of zero temperature. This effect can be applied to determine the coupling strength and QD level spacing in N-QD-S.Comment: 11 pages, 3 figures, LaTe

    Modeling of laser wakefield acceleration in Lorentz boosted frame using EM-PIC code with spectral solver

    Get PDF
    WOS:000333403900007 (Nº de Acesso Web of Science)Simulating laser wakefield acceleration (LWFA) in a Lorentz boosted frame in which the plasma drifts towards the laser with nu(b) can speed up the simulation by factors of gamma(2)(b) = (1 nu(2)(b)/c(2))(-1). In these simulations the relativistic drifting plasma inevitably induces a high frequency numerical instability that contaminates the interesting physics. Various approaches have been proposed to mitigate this instability. One approach is to solve Maxwell equations in Fourier space (a spectral solver) as this has been shown to suppress the fastest growing modes of this instability in simple test problems using a simple low pass or "ring" or "shell" like filters in Fourier space. We describe the development of a fully parallelized, multi-dimensional, particle-in-cell code that uses a spectral solver to solve Maxwell's equations and that includes the ability to launch a laser using a moving antenna. This new EM-PIC code is called UPIC-EMMA and it is based on the components of the UCLA PIC framework (UPIC). We show that by using UPIC-EMMA, LWFA simulations in the boosted frames with arbitrary yb can be conducted without the presence of the numerical instability. We also compare the results of a few LWFA cases for several values of yb, including lab frame simulations using OSIRIS, an EM-PIC code with a finite-difference time domain (FDTD) Maxwell solver. These comparisons include cases in both linear and nonlinear regimes. We also investigate some issues associated with numerical dispersion in lab and boosted frame simulations and between FDTD and spectral solvers

    Modeling of laser wakefield acceleration in Lorentz boosted frame using a Quasi-3D OSIRIS algorithm

    Get PDF
    Recently it was proposed in [A. F. Lifschitz, et. al., J. Comp. Phys. 228, 1803 (2009)] that laser wakefield acceleration could be modeled efficiently using a particle-in-cell code in cylindrical coordinates if the fields and currents were expanded into Fourier modes in the azimuthal angle, ?. We have implemented this algorithm into OSIRIS, including a new rigorous charge conserving deposition routine applicable for it [A. Davidson, et. al., J. Comp. Phys. 281, 1063 (2014)]. This algorithm can be interpreted as a PIC description in r - z and a gridless description in ? in which the expansion into ? modes is truncated at a desired level. This new quasi-3D algorithm greatly reduces the computational load by describing important three-dimensional (3D) geometrical effects with nearly two-dimensional calculations. In this paper, we propose to combine this algorithm with the Lorentz boosted frame method for simulations of Laser wakefield acceleration (LWFA). We show preliminary results, including an investigation of the unstable numerical Cerenkov instability modes for this geometry, and discuss directions for future work. These preliminary results indicate that combining the quasi-3D method and the Lorentz boosted frame method together may provide unprecedented speed ups for LWFA simulations.info:eu-repo/semantics/publishedVersio

    Meson Form Factors and Non-Perturbative Gluon Propagators

    Get PDF
    The meson (pion and kaon) form factor is calculated in the perturbative framework with alternative forms for the running coupling constant and the gluon propagator in the infrared kinematic region. These modified forms are employed to test the sensibility of the meson form factor to the nonperturbative contributions. Its is a powerful discriminating quantity and the results obtained with a particular choice of modified running coupling constant and gluon propagator have a good agreement with the available data, for both mesons, indicating the robustness of the method of calculation. Nevertheless, nonperturbative aspects may be included in the perturbative framework of calculation of exclusive processes.Comment: 18 pages, 7 figures. Discutions added, clarifing figures. Accepted to be published in Phys. Rev.

    On the Convergence of Ritz Pairs and Refined Ritz Vectors for Quadratic Eigenvalue Problems

    Full text link
    For a given subspace, the Rayleigh-Ritz method projects the large quadratic eigenvalue problem (QEP) onto it and produces a small sized dense QEP. Similar to the Rayleigh-Ritz method for the linear eigenvalue problem, the Rayleigh-Ritz method defines the Ritz values and the Ritz vectors of the QEP with respect to the projection subspace. We analyze the convergence of the method when the angle between the subspace and the desired eigenvector converges to zero. We prove that there is a Ritz value that converges to the desired eigenvalue unconditionally but the Ritz vector converges conditionally and may fail to converge. To remedy the drawback of possible non-convergence of the Ritz vector, we propose a refined Ritz vector that is mathematically different from the Ritz vector and is proved to converge unconditionally. We construct examples to illustrate our theory.Comment: 20 page

    Microwave-induced pi-junction transition in a superconductor / quantum-dot / superconductor structure

    Full text link
    Using the nonequilibrium Green function, we show that microwave irradiation can reverse the supercurrent flowing through a superconductor / quantum-dot / superconductor structure. In contrast with the conventional sideband effect in normal-metal / quantum-dot / normal-metal junctions, the photon-assisted structures appear near E0=n2ω(n=±1,±2...)E_{0}=\frac{n}{2}\hbar \omega (n=\pm 1,\pm 2...), where E0E_{0} is the resonant energy level of the quantum dot and ω\omega is the frequency of microwave field. Each photon-assisted structure is composed of a negative and a positive peak, with an abrupt jump from the negative peak to the positive peak around E0=n2ωE_{0}=\frac{n}{2}\hbar \omega . The microwave-induced π\pi -junction transition is interpreted in the picture of photon-assisted Andreev bound states, which are formed due to multiple photon-assisted Andreev reflection between the two superconductors. Moreover, the main resonance located at E0=0E_{0}=0 can also be reversed with proper microwave strength and frequency.Comment: 10 pagres, 3 figure
    corecore