26,842 research outputs found
Evaluation of meteorological airborne Doppler radar
This paper will discuss the capabilities of airborne Doppler radar for atmospheric sciences research. The evaluation is based on airborne and ground based Doppler radar observations of convective storms. The capability of airborne Doppler radar to measure horizontal and vertical air motions is evaluated. Airborne Doppler radar is shown to be a viable tool for atmospheric sciences research
Charge radius and dipole response of Li
We investigate the consistency of the measured charge radius and dipole
response of Li within a three-body model. We show how these observables
are related to the mean square distance between the Li core and the center
of mass of the two valence neutrons. In this representation we find by
considering the effect of smaller corrections that the discrepancy between the
results of the two measurements is of the order of 1.5. We also
investigate the sensitivity to the three-body structure of Li and find
that the charge radius measurement favors a model with a 50% s-wave component
in the ground state of the two-neutron halo, whereas the dipole response is
consistent with a smaller s-wave component of about 25% value.Comment: 6 pages, 3 figure
Classifying LEP Data with Support Vector Algorithms
We have studied the application of different classification algorithms in the
analysis of simulated high energy physics data. Whereas Neural Network
algorithms have become a standard tool for data analysis, the performance of
other classifiers such as Support Vector Machines has not yet been tested in
this environment. We chose two different problems to compare the performance of
a Support Vector Machine and a Neural Net trained with back-propagation:
tagging events of the type e+e- -> ccbar and the identification of muons
produced in multihadronic e+e- annihilation events.Comment: 7 pages, 4 figures, submitted to proceedings of AIHENP99, Crete,
April 199
Exploring molecular complexity with ALMA (EMoCA): Detection of three new hot cores in Sagittarius B2(N)
The SgrB2 molecular cloud contains several sites forming high-mass stars.
SgrB2(N) is one of its main centers of activity. It hosts several compact and
UCHII regions, as well as two known hot molecular cores (SgrB2(N1) and
SgrB2(N2)), where complex organic molecules are detected. Our goal is to use
the high sensitivity of ALMA to characterize the hot core population in
SgrB2(N) and shed a new light on the star formation process. We use a complete
3 mm spectral line survey conducted with ALMA to search for faint hot cores in
SgrB2(N). We report the discovery of three new hot cores that we call
SgrB2(N3), SgrB2(N4), and SgrB2(N5). The three sources are associated with
class II methanol masers, well known tracers of high-mass star formation, and
SgrB2(N5) also with a UCHII region. The chemical composition of the sources and
the column densities are derived by modelling the whole spectra under the
assumption of LTE. The H2 column densities are computed from ALMA and SMA
continuum emission maps. The H2 column densities of these new hot cores are
found to be 16 up to 36 times lower than the one of the main hot core Sgr
B2(N1). Their spectra have spectral line densities of 11 up to 31 emission
lines per GHz, assigned to 22-25 molecules. We derive rotational temperatures
around 140-180 K for the three new hot cores and mean source sizes of 0.4 for
SgrB2(N3) and 1.0 for SgrB2(N4) and SgrB2(N5). SgrB2(N3) and SgrB2(N5) show
high velocity wing emission in typical outflow tracers, with a bipolar
morphology in their integrated intensity maps suggesting the presence of an
outflow, like in SgrB2(N1). The associations of the hot cores with class II
methanol masers, outflows, and/or UCHII regions tentatively suggest the
following age sequence: SgrB2(N4), SgrB2(N3), SgrB2(N5), SgrB2(N1). The status
of SgrB2(N2) is unclear. It may contain two distinct sources, a UCHII region
and a very young hot core.Comment: Accepted for publication in A&A, 24 pages, 23 figure
A spectroscopic study of the cycling transition 4s[3/2]_2-4p[5/2]_3 at 811.8 nm in Ar-39: Hyperfine structure and isotope shift
Doppler-free saturated absorption spectroscopy is performed on an enriched
radioactive Ar-39 sample. The spectrum of the 3s^2 3p^5 4s [3/2]_2 - 3s^2 3p^5
4p [5/2]_3 cycling transition at 811.8 nm is recorded, and its isotope shift
between Ar-39 and Ar-40 is derived. The hyperfine coupling constants A and B
for both the 4s [3/2]_2 and 4p [5/2]_3 energy levels in Ar-39 are also
determined. The results partially disagree with a recently published
measurement of the same transition. Based on earlier measurements as well as
the current work, the isotope shift and hyperfine structure of the
corresponding transition in Ar-37 are also calculated. These spectroscopic data
are essential for the realization of laser trapping and cooling of Ar-37 and
Ar-39
Amino acids precursors in lunar finds
The consistent pattern is discussed of amino acids found in lunar dust from Apollo missions. The evidence indicates that compounds yielding amino acids were implanted into the surface of the moon by the solar wind, and the kind and amounts of amino acids found on the moon are closely similar to those found in meteorites. It is concluded that there is a common cosmochemical pattern for the moom and meteorites, and this offers evidence of a common course of cosmochemical reactions for carbon
Duality and Pomeron effective theory for QCD at high energy and large N_c
We propose an effective theory which governs Pomeron dynamics in QCD at high
energy, in the leading logarithmic approximation, and in the limit where N_c,
the number of colors, is large. In spite of its remarkably simple structure,
this effective theory generates precisely the evolution equations for
scattering amplitudes that have been recently deduced from a more complete
microscopic analysis. It accounts for the BFKL evolution of the Pomerons
together with their interactions: dissociation (one Pomeron splitting into two)
and recombination (two Pomerons merging into one). It is constructed by
exploiting a duality principle relating the evolutions in the target and the
projectile, more precisely, splitting and merging processes, or fluctuations in
the dilute regime and saturation effects in the dense regime. The simplest
Pomeron loop calculated with the effective theory is free of both ultraviolet
or infrared singularities.Comment: 13 pages, 1 figur
- …