5,453 research outputs found

    Analysis of the entanglement between two individual atoms using global Raman rotations

    Full text link
    Making use of the Rydberg blockade, we generate entanglement between two atoms individually trapped in two optical tweezers. In this paper we detail the analysis of the data and show that we can determine the amount of entanglement between the atoms in the presence of atom losses during the entangling sequence. Our model takes into account states outside the qubit basis and allows us to perform a partial reconstruction of the density matrix describing the two atom state. With this method we extract the amount of entanglement between pairs of atoms still trapped after the entangling sequence and measure the fidelity with respect to the expected Bell state. We find a fidelity Fpairs=0.74(7)F_{\rm pairs} =0.74(7) for the 62% of atom pairs remaining in the traps at the end of the entangling sequence

    Entanglement of two individual neutral atoms using Rydberg blockade

    Full text link
    We report the generation of entanglement between two individual 87^{87}Rb atoms in hyperfine ground states F=1,M=1>|F=1,M=1> and F=2,M=2>|F=2,M=2> which are held in two optical tweezers separated by 4 μ\mum. Our scheme relies on the Rydberg blockade effect which prevents the simultaneous excitation of the two atoms to a Rydberg state. The entangled state is generated in about 200 ns using pulsed two-photon excitation. We quantify the entanglement by applying global Raman rotations on both atoms. We measure that 61% of the initial pairs of atoms are still present at the end of the entangling sequence. These pairs are in the target entangled state with a fidelity of 0.75.Comment: text revised, with additional reference

    Entanglement of two individual atoms using the Rydberg blockade

    Full text link
    We report on our recent progress on the manipulation of single rubidium atoms trapped in optical tweezers and the generation of entanglement between two atoms, each individually trapped in neighboring tweezers. To create an entangled state of two atoms in their ground states, we make use of the Rydberg blockade mechanism. The degree of entanglement is measured using global rotations of the internal states of both atoms. Such internal state rotations on a single atom are demonstrated with a high fidelity.Comment: Proceeding of the 19th International Conference on Laser Spectroscopy ICOLS 2009, 7-13 June 2009, Hokkaido, Japa

    Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage.

    Get PDF
    Tissue fibrosis is a major cause of mortality that results from the deposition of matrix proteins by an activated mesenchyme. Macrophages accumulate in fibrosis, but the role of specific subgroups in supporting fibrogenesis has not been investigated in vivo. Here, we used single-cell RNA sequencing (scRNA-seq) to characterize the heterogeneity of macrophages in bleomycin-induced lung fibrosis in mice. A novel computational framework for the annotation of scRNA-seq by reference to bulk transcriptomes (SingleR) enabled the subclustering of macrophages and revealed a disease-associated subgroup with a transitional gene expression profile intermediate between monocyte-derived and alveolar macrophages. These CX3CR1+SiglecF+ transitional macrophages localized to the fibrotic niche and had a profibrotic effect in vivo. Human orthologs of genes expressed by the transitional macrophages were upregulated in samples from patients with idiopathic pulmonary fibrosis. Thus, we have identified a pathological subgroup of transitional macrophages that are required for the fibrotic response to injury

    E2 properties of nuclei far from stability and the proton-halo problem of 8B

    Full text link
    E2 properties of A=6--10 nuclei, including those of nuclei far from stability, are studied by a (0+2)ω(0+2)\hbar\omega shell-model calculation which includes E2 core-polarization effects explicitly. The quadrupole moments and the E2 transition strengths in A=6--10 nuclei are described quite well by the present calculation. This result indicates that the relatively large value of the quadrupole moment of 8^8B can be understood without introducing the proton-halo in 8^8B. An interesting effect of the 2ω2\hbar\omega core-polarization is found for effective charges used in the 0ω0\hbar\omega shell model; although isoscalar effective-charges are almost constant as a function of nucleus, appreciable variations are needed for isovector effective-charges which play important roles in nuclei with high isospin-values.Comment: (LaTeX, 23 pages

    Retarding Field Integrated Fluorescence and Electron Microscope

    Get PDF
    The authors present the application of a retarding field between the electron objective lens and sample in an integrated fluorescence and electron microscope. The retarding field enhances signal collection and signal strength in the electron microscope. This is beneficial for samples prepared for integrated fluorescence and electron microscopy as the amount of staining material added to enhance electron microscopy signal is typically lower compared to conventional samples in order to preserve fluorescence. We demonstrate signal enhancement through the applied retarding field for both 80-nm post-embedding immunolabeled sections and 100-nm in-resin preserved fluorescence sections. Moreover, we show that tuning the electron landing energy particularly improves imaging conditions for ultra-thin (50 nm) sections, where optimization of both retarding field and interaction volume contribute to the signal improvement. Finally, we show that our integrated retarding field setup allows landing energies down to a few electron volts with 0.3 eV dispersion, which opens new prospects for assessing electron beam induced damage by in situ quantification of the observed bleaching of the fluorescence following irradiation

    Digital pulse-shape discrimination of fast neutrons and gamma rays

    Full text link
    Discrimination of the detection of fast neutrons and gamma rays in a liquid scintillator detector has been investigated using digital pulse-processing techniques. An experimental setup with a 252Cf source, a BC-501 liquid scintillator detector, and a BaF2 detector was used to collect waveforms with a 100 Ms/s, 14 bit sampling ADC. Three identical ADC's were combined to increase the sampling frequency to 300 Ms/s. Four different digital pulse-shape analysis algorithms were developed and compared to each other and to data obtained with an analogue neutron-gamma discrimination unit. Two of the digital algorithms were based on the charge comparison method, while the analogue unit and the other two digital algorithms were based on the zero-crossover method. Two different figure-of-merit parameters, which quantify the neutron-gamma discrimination properties, were evaluated for all four digital algorithms and for the analogue data set. All of the digital algorithms gave similar or better figure-of-merit values than what was obtained with the analogue setup. A detailed study of the discrimination properties as a function of sampling frequency and bit resolution of the ADC was performed. It was shown that a sampling ADC with a bit resolution of 12 bits and a sampling frequency of 100 Ms/s is adequate for achieving an optimal neutron-gamma discrimination for pulses having a dynamic range for deposited neutron energies of 0.3-12 MeV. An investigation of the influence of the sampling frequency on the time resolution was made. A FWHM of 1.7 ns was obtained at 100 Ms/s.Comment: 26 pages, 14 figures, submitted to Nuclear Instruments and Methods in Physics Research

    MARTA: A high-energy cosmic-ray detector concept with high-accuracy muon measurement

    Full text link
    A new concept for the direct measurement of muons in air showers is presented. The concept is based on resistive plate chambers (RPCs), which can directly measure muons with very good space and time resolution. The muon detector is shielded by placing it under another detector able to absorb and measure the electromagnetic component of the showers such as a water-Cherenkov detector, commonly used in air shower arrays. The combination of the two detectors in a single, compact detector unit provides a unique measurement that opens rich possibilities in the study of air showers.Comment: 11 page
    corecore