1,604 research outputs found

    Electronic and Vibrational Properties of gamma-AlH3

    Full text link
    Aluminum hydride (alane) AlH_3 is an important material in hydrogen storage applications. It is known that AlH_3 exists in multiply forms of polymorphs, where α\alpha-AlH_3 is found to be the most stable with a hexagonal structure. Recent experimental studies on γ\gamma-AlH_3 reported an orthorhombic structure with a unique double-bridge bond between certain Al and H atoms. This was not found in α\alpha-AlH_3 or other polymorphs. Using density functional theory, we have investigated the energetics, and the structural, electronic, and phonon vibrational properties for the newly reported γ\gamma-AlH_3 structure. The current calculation concludes that γ\gamma-AlH_3 is less stable than α\alpha-AlH_3 by 2.1 KJ/mol. Interesting binding features associated with the unique geometry of γ\gamma-AlH3 are discussed from the calculated electronic properties and phonon vibrational modes. The binding of H-s with higher energy Al-p,d orbitals is enhanced within the double-bridge arrangement, giving rise to a higher electronic energy for the system. Distinguishable new features in the vibrational spectrum of γ\gamma-AlH_3 were attributed to the double-bridge and hexagonal-ring structures.Comment: 18 pages, 9 figures, submited to PR

    The effect of inelastic processes on tunneling

    Full text link
    We study an electron that interacts with phonons or other linear or nonlinear excitations as it resonantly tunnels. The method we use is based on mapping a many-body problem in a large variational space exactly onto a one-body problem. The method is conceptually simpler than previous Green's function approaches, and allows the essentially exact numerical solution of much more general problems. We solve tunneling problems with transverse channels, multiple sites coupled to phonons, and multiple phonon degrees of freedom and excitations.Comment: 12 pages, REVTex, 4 figures in compressed tar .ps forma

    Towards a Hybrid Method to Categorize Interruptions and Activities in Healthcare

    Get PDF
    Objective Interruptions are known to have a negative impact on activity performance. Understanding how an interruption contributes to human error is limited because there is not a standard method for analyzing and classifying interruptions. Qualitative data are typically analyzed by either a deductive or an inductive method. Both methods have limitations. In this paper a hybrid method was developed that integrates deductive and inductive methods for the categorization of activities and interruptions recorded during an ethnographic study of physicians and registered nurses in a Level One Trauma Center. Understanding the effects of interruptions is important for designing and evaluating informatics tools in particular and for improving healthcare quality and patient safety in general. Method The hybrid method was developed using a deductive a priori classification framework with the provision of adding new categories discovered inductively in the data. The inductive process utilized line-by-line coding and constant comparison as stated in Grounded Theory. Results The categories of activities and interruptions were organized into a three-tiered hierarchy of activity. Validity and reliability of the categories were tested by categorizing a medical error case external to the study. No new categories of interruptions were identified during analysis of the medical error case. Conclusions Findings from this study provide evidence that the hybrid model of categorization is more complete than either a deductive or an inductive method alone. The hybrid method developed in this study provides the methodical support for understanding, analyzing, and managing interruptions and workflow

    From laboratory manipulations to Earth system models: scaling calcification impacts of ocean acidification

    Get PDF
    The observed variation in the calcification responses of coccolithophores to changes in carbonate chemistry paints a highly incoherent picture, particularly for the most commonly cultured "species", <i>Emiliania huxleyi</i>. The disparity between magnitude and potentially even sign of the calcification change under simulated end-of-century ocean surface chemical changes (higher <i>p</i>CO<sub>2</sub>, lower pH and carbonate saturation), raises challenges to quantifying future carbon cycle impacts and feedbacks because it introduces significant uncertainty in parameterizations used for global models. Here we compile the results of coccolithophore carbonate chemistry manipulation experiments and review how ocean carbon cycle models have attempted to bridge the gap from experiments to global impacts. Although we can rule out methodological differences in how carbonate chemistry is altered as introducing an experimental bias, the absence of a consistent calcification response implies that model parameterizations based on small and differing subsets of experimental observations will lead to varying estimates for the global carbon cycle impacts of ocean acidification. We highlight two pertinent observations that might help: (1) the degree of coccolith calcification varies substantially, both between species and within species across different genotypes, and (2) the calcification response across mesocosm and shipboard incubations has so-far been found to be relatively consistent. By analogy to descriptions of plankton growth rate vs. temperature, such as the "Eppley curve", which seek to encapsulate the net community response via progressive assemblage change rather than the response of any single species, we posit that progressive future ocean acidification may drive a transition in dominance from more to less heavily calcified coccolithophores. Assemblage shift may be more important to integrated community calcification response than species-specific response, highlighting the importance of whole community manipulation experiments to models in the absence of a complete physiological understanding of the underlying calcification process. However, on a century time-scale, regardless of the parameterization adopted, the atmospheric <i>p</i>CO<sub>2</sub> impact of ocean acidification is minor compared to other global carbon cycle feedbacks

    Hypoxia-inducible factor-1α and -2α are expressed in most rectal cancers but only hypoxia-inducible factor-1α is associated with prognosis

    Get PDF
    The hypoxia-mediated response of tumours is a major determining factor in growth and metastasis. Understanding tumour biology under hypoxic conditions is crucial for the development of antiangiogenic therapy. Using one of the largest cohorts of rectal adenocarcinomas to date, this study investigated hypoxia-inducible factor-1α (HIF-1α) and HIF-2α protein expression in relation to rectal cancer recurrence and cancer-specific survival. Patients (n=90) who had undergone surgery for rectal adenocarcinoma, with no prior neoadjuvant therapy or metastatic disease, and for whom adequate follow-up data were available were selected. Microvessel density (MVD), HIF-1α and HIF-2α expressions were assessed immunohistologically with the CD34 antibody for vessel identification and the NB100-131B and NB100-132D3 antibodies for HIF-1α and HIF-2α, respectively. In a multifactorial analysis, results were correlated with tumour stage, recurrence rate and long-term survival. Microvessel density was higher across T and N stages (P<0.001) and associated with poor survival (hazard ratio (HR)=8.7, P<0.005) and decreased disease-free survival (HR=4.7, P<0.005). hypoxia-inducible factor-1α and -2α were expressed in >50% of rectal cancers (HIF-1α, 54%, 48/90; HIF-2α, 64%, 58/90). HIF-1α positivity was associated with both TNM stage (P<0.05) and vascular invasion (P<0.005). In contrast, no associations were shown between HIF-2α expression and any pathological features, and HIF-1α positivity had no effect on outcome. The study showed an independent association between HIF-1α expression and advanced TNM stage with poor outcome. Our results indicate that HIF-1α, but not HIF-2α, might be used as a marker of prognosis, in addition to methods currently used, to enhance patient management

    Recent progress in understanding climate thresholds: ice sheets, the Atlantic meridional overturning circulation, tropical forests and responses to ocean acidification

    Get PDF
    This article reviews recent scientific progress, relating to four major systems that could exhibit threshold behaviour: ice sheets, the Atlantic meridional overturning circulation (AMOC), tropical forests and ecosystem responses to ocean acidification. The focus is on advances since the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5). The most significant developments in each component are identified by synthesizing input from multiple experts from each field. For ice sheets, some degree of irreversible loss (timescales of millennia) of part of the West Antarctic Ice Sheet (WAIS) may have already begun, but the rate and eventual magnitude of this irreversible loss is uncertain. The observed AMOC overturning has decreased from 2004–2014, but it is unclear at this stage whether this is forced or is internal variability. New evidence from experimental and natural droughts has given greater confidence that tropical forests are adversely affected by drought. The ecological and socio-economic impacts of ocean acidification are expected to greatly increase over the range from today’s annual value of around 400, up to 650 ppm CO2 in the atmosphere (reached around 2070 under RCP8.5), with the rapid development of aragonite undersaturation at high latitudes affecting calcifying organisms. Tropical coral reefs are vulnerable to the interaction of ocean acidification and temperature rise, and the rapidity of those changes, with severe losses and risks to survival at 2 °C warming above pre-industrial levels. Across the four systems studied, however, quantitative evidence for a difference in risk between 1.5 and 2 °C warming above pre-industrial levels is limited

    Tuning a Resonance in the Fock Space: Optimization of Phonon Emission in a Resonant Tunneling Device

    Full text link
    Phonon-assisted tunneling in a double barrier resonant tunneling device can be seen as a resonance in the electron-phonon Fock space which is tuned by the applied voltage. We show that the geometrical parameters can induce a symmetry condition in this space that can strongly enhance the emission of longitudinal optical phonons. For devices with thin emitter barriers this is achieved by a wider collector's barrier.Comment: 4 pages, 3 figures. Figure 1 changed, typos correcte

    The Royal Society Climate Updates: What have we learnt since the IPCC 5th Assessment Report?

    Get PDF
    Climate has a huge influence on the way we live. For example, it affects the crops we can grow and the diseases we might encounter in particular locations. It also determines the physical infrastructure we need to build to survive comfortably in the face of extremes of heat, cold, drought and flood. Human emissions of carbon dioxide and other greenhouse gases have changed the composition of the atmosphere over the last two centuries. This is expected to take Earth’s climate out of the relatively stable range that has characterised the last few thousand years, during which human society has emerged. Measurements of ice cores and sea-floor sediments show that the current concentration of carbon dioxide, at just over 400 parts per million, has not been experienced for at least three million years. This causes more of the heat from the Sun to be retained on Earth, warming the atmosphere and ocean. The global average of atmospheric temperature has so far risen by about 1˚C compared to the late 19th century, with further increases expected dependent on the trajectory of carbon dioxide emissions in the next few decades. In 2013 and 2014 the Intergovernmental Panel on Climate Change (IPCC) published its fifth assessment report (AR5) assessing the evidence about climate change and its impacts. This assessment considered data from observations and records of the past. It then assessed future changes and impacts based on various scenarios for emissions of greenhouse gases and other anthropogenic factors. In 2015, almost every nation in the world agreed (in the so-called Paris Agreement) to the challenging goal of keeping global average warming to well below 2°C above pre-industrial temperatures while pursuing efforts to limit it to 1.5°C. With the next assessment report (AR6) not due until 2022, it is timely to consider how evidence presented since the publication of AR5 affects the assessments made then. The Earth’s climate is a complex system. To understand it, and the impact that climate change will have, requires many different kinds of study. Climate science consists of theory, observation and modelling. Theory begins with well-established scientific principles, seeks to understand processes occurring over a range of spatial and temporal scales and provides the basis for models. Observation includes long time series of careful measurements, recent data from satellites, and studies of past climate using archives such as tree rings, ice cores and marine sediments. It also encompasses laboratory and field experiments designed to test and enhance understanding of processes. Computer models of the Earth climate system use theory, calibrated and validated by the observations, to calculate the result of future changes. There are nevertheless uncertainties in estimating future climate. Firstly the course of climate change is dependent on what socioeconomic, political and energy paths society takes. Secondly there remain inevitable uncertainties induced for example by variability in the interactions between different parts of the Earth system and by processes, such as cloud formation, that occur at too small a scale to incorporate precisely in global models. Assessments such as those of the IPCC describe the state of knowledge at a particular time, and also highlight areas where more research is needed. We are still exploring and improving our understanding of many of the processes within the climate system, but, on the whole, new research confirms the main ideas underpinning climate research, while refining knowledge, so as to reduce the uncertainty in the magnitude and extent of crucial impacts
    corecore