100 research outputs found

    The origin of the red luminescence in Mg-doped GaN

    Full text link
    Optically-detected magnetic resonance (ODMR) and positron annihilation spectroscopy (PAS) experiments have been employed to study magnesium-doped GaN layers grown by metal-organic vapor phase epitaxy. As the Mg doping level is changed, the combined experiments reveal a strong correlation between the vacancy concentrations and the intensity of the red photoluminescence band at 1.8 eV. The analysis provides strong evidence that the emission is due to recombination in which electrons both from effective mass donors and from deeper donors recombine with deep centers, the deep centers being vacancy-related defects.Comment: 4 pages, 3 figure

    Valence band offset of InN/AlN heterojunctions measured by X-ray photoelectron spectroscopy

    Get PDF
    The valence band offset of wurtzite-InN/AlN (0001) heterojunctions is determined by x-ray photoelectron spectroscopy to be 1.52±0.17 eV. Together with the resulting conduction band offset of 4.0±0.2 eV, a type-I heterojunction forms between InN and AlN in the straddling arrangement

    Site controlled red-yellow-green light emitting InGaN quantum discs on nano-tipped GaN rods

    Get PDF
    We report a method of growing site controlled InGaN multiple quantum discs (QDs) at uniform wafer scale on coalescence free ultra-high density (>80%) nanorod templates by metal organic chemical vapour deposition (MOCVD). The dislocation and coalescence free nature of the GaN space filling nanorod arrays eliminates the well-known emission problems seen in InGaN based visible light sources that these types of crystallographic defects cause. Correlative scanning transmission electron microscopy (STEM), energy-dispersive X-ray (EDX) mapping and cathodoluminescence (CL) hyperspectral imaging illustrates the controlled site selection of the red, yellow and green (RYG) emission at these nano tips. This article reveals that the nanorod tips’ broad emission in the RYG visible range is in fact achieved by manipulating the InGaN QD’s confinement dimensions, rather than significantly increasing the In%. This article details the easily controlled method of manipulating the QDs dimensions producing high crystal quality InGaN without complicated growth conditions needed for strain relaxation and alloy compositional changes seen for bulk planar GaN templates

    Correction: Site controlled red-yellow-green light emitting InGaN quantum discs on nano-tipped GaN rods

    Get PDF
    Correction for 'Site controlled red-yellow-green light emitting InGaN quantum discs on nano-tipped GaN rods' by M. Conroy et al., Nanoscale, 2016, 8 , 11019-11026

    A systematic comparison of polar and semipolar Si-doped AlGaN alloys with high AlN content

    Get PDF
    Abstract With a view to supporting the development of ultra-violet light-emitting diodes and related devices, the compositional, emission and morphology properties of Si-doped n-type Al x Ga1-x N alloys are extensively compared. This study has been designed to determine how the different Al x Ga1-x N crystal orientations (polar (0001) and semipolar (11–22)) affect group-III composition and Si incorporation. Wavelength dispersive x-ray (WDX) spectroscopy was used to determine the AlN mole fraction (x ≈ 0.57–0.85) and dopant concentration (3 × 1018–1 × 1019 cm−3) in various series of Al x Ga1-x N layers grown on (0001) and (11–22) AlN/sapphire templates by metalorganic chemical vapor deposition. The polar samples exhibit hexagonal surface features with Ga-rich boundaries confirmed by WDX mapping. Surface morphology was examined by atomic force microscopy for samples grown with different disilane flow rates and the semipolar samples were shown to have smoother surfaces than their polar counterparts, with an approximate 15% reduction in roughness. Optical characterization using cathodoluminescence (CL) spectroscopy allowed analysis of near-band edge emission in the range 4.0–5.4 eV as well as various deep impurity transition peaks in the range 2.7–4.8 eV. The combination of spatially-resolved characterization techniques, including CL and WDX, has provided detailed information on how the crystal growth direction affects the alloy and dopant concentrations.</jats:p

    Comparative study of polar and semipolar (1122) InGaN layers grown by metalorganic vapour phase epitaxy

    Get PDF
    InGaN layers were grown simultaneously on (11ÂŻ22) GaN and (0001) GaN templates by metalorganic vapour phase epitaxy. At higher growth temperature ( 750oC), the indium content (<15%) of the (11ÂŻ22) and (0001) InGaN layers was similar. However, for temperatures less than 750oC, the indium content of the (11ÂŻ22) InGaN layers (15 - 26%) was generally lower than those with (0001) orientation (15 - 32%). The compositional deviation was attributed to the different strain relaxations between the (11ÂŻ22) and (0001) InGaN layers. Room temperature photoluminescence measurements of the (11ÂŻ22) InGaN layers showed an emission wavelength that shifts gradually from 380 nm to 580 nm with decreasing growth temperature (or increasing indium composition). The peak emission wavelength of the (11 ÂŻ22) InGaN layers with an indium content of more than 10% blue-shifted a constant value of (50 - 60) nm when using higher excitation power densities. This blue-shift was attributed to band lling effects in the layers.This work was nancially supported by the EU-FP7 ALIGHT project, under agreement no. FP7-280587. This work was also partially supported by the Programme for Research in Third Level Institutions (PRTLI) fourth and fth cycles. SNA acknowledges nancial support for his postgraduate fellowship from the Iranian Ministry of Science, Research and Technology. PJP acknowledges nancial support for his Professorship from Science Foundation Ireland.This is the accepted manuscript. The final version is available from AIP at http://scitation.aip.org/content/aip/journal/jap/116/15/10.1063/1.489856

    Fabrication of p-type porous GaN on silicon and epitaxial GaN

    Get PDF
    Abstract : Porous GaN layers are grown on silicon from gold or platinum catalyst seed layers, and self-catalyzed on epitaxial GaN ïŹlms on sapphire. Using a Mg-based precursor, we demonstrate p-type doping of the porous GaN. Electrical measurements for p-type GaN on Si show Ohmic and Schottky behavior from gold and platinum seeded GaN, respectively. Ohmicity is attributed to the formation of a Ga2Au intermetallic. Porous p-type GaN was also achieved on epitaxial n-GaN on sapphire, and transport measurements conïŹrm a p-n junction commensurate with a doping density of 1018 cm 3. Photoluminescence and cathodoluminescence conïŹrm emission from Mg-acceptors in porous p-type GaN

    An enhanced surface passivation effect in InGaN/GaN disk-in-nanowire light emitting diodes for mitigating Shockley-Read-Hall recombination

    Get PDF
    We present a detailed study of the effects of dangling bond passivation and the comparison of different sulfide passivation processes on the properties of InGaN/GaN quantum-disk (Qdisk)-in-nanowire based light emitting diodes (NW-LEDs). Our results demonstrated the first organic sulfide passivation process for nitride nanowires (NWs). The results from Raman spectroscopy, photoluminescence (PL) measurements, and X-ray photoelectron spectroscopy (XPS) showed that octadecylthiol (ODT) effectively passivated the surface states, and altered the surface dynamic charge, and thereby recovered the band-edge emission. The effectiveness of the process with passivation duration was also studied. Moreover, we also compared the electro-optical performance of NW-LEDs emitting at green wavelength before and after ODT passivation. We have shown that the Shockley–Read–Hall (SRH) non-radiative recombination of NW-LEDs can be greatly reduced after passivation by ODT, which led to a much faster increasing trend of quantum efficiency and higher peak efficiency. Our results highlighted the possibility of employing this technique to further design and produce high performance NW-LEDs and NW-lasers
    • 

    corecore