10,175 research outputs found

    Evidence for nonlinear diffusive shock acceleration of cosmic-rays in the 2006 outburst of the recurrent nova RS Ophiuchi

    Full text link
    Spectroscopic observations of the 2006 outburst of the recurrent nova RS Ophiuchi at both infrared (IR) and X-ray wavelengths have shown that the blast wave has decelerated at a higher rate than predicted by the standard test-particle adiabatic shock-wave model. Here we show that the observed evolution of the nova remnant can be explained by the diffusive shock acceleration of particles at the blast wave and the subsequent escape of the highest energy ions from the shock region. Nonlinear particle acceleration can also account for the difference of shock velocities deduced from the IR and X-ray data. The maximum energy that accelerated electrons and protons can have achieved in few days after outburst is found to be as high as a few TeV. Using the semi-analytic model of nonlinear diffusive shock acceleration developed by Berezhko & Ellison, we show that the postshock temperature of the shocked gas measured with RXTE/PCA and Swift/XRT imply a relatively moderate acceleration efficiency.Comment: Accepted for publication in ApJ

    Room temperature photonic crystal defect lasers at near-infrared wavelengths in InGaAsP

    Get PDF
    Room temperature lasing from optically pumped single defects in a two-dimensional (2-D) photonic bandgap (PBG) crystal is demonstrated. The high-Q optical microcavities are formed by etching a triangular array of air holes into a half-wavelength thick multiquantum-well waveguide. Defects in the 2-D photonic crystal are used to support highly localized optical modes with volumes ranging from 2 to 3 (lambda/2n)(3). Lithographic tuning of the air hole radius and the lattice spacing are used to match the cavity wavelength to the quantum-well gain peak, as well as to increase the cavity Q. The defect lasers were pumped with 10-30 ns pulses of 0.4-1% duty cycle. The threshold pump power was 1.5 mW (approximate to 500 μW absorbed)

    Slow spin relaxation in a highly polarized cooperative paramagnet

    Full text link
    We report measurements of the ac susceptibility of the cooperative paramagnet Tb2Ti2O7 in a strong magnetic field. Our data show the expected saturation maximum in chi(T) and also an unexpected low frequency dependence (< 1 Hz) of this peak, suggesting very slow spin relaxations are occurring. Measurements on samples diluted with nonmagnetic Y3+ or Lu3+ and complementary measurements on pure and diluted Dy2Ti2O7 strongly suggest that the relaxation is associated with dipolar spin correlations, representing unusual cooperative behavior in a paramagnetic system.Comment: Accepted for publication in Physical Review Letter

    Quantum gate characterization in an extended Hilbert space

    Get PDF
    We describe an approach for characterizing the process of quantum gates using quantum process tomography, by first modeling them in an extended Hilbert space, which includes non-qubit degrees of freedom. To prevent unphysical processes from being predicted, present quantum process tomography procedures incorporate mathematical constraints, which make no assumptions as to the actual physical nature of the system being described. By contrast, the procedure presented here ensures physicality by placing physical constraints on the nature of quantum processes. This allows quantum process tomography to be performed using a smaller experimental data set, and produces parameters with a direct physical interpretation. The approach is demonstrated by example of mode-matching in an all-optical controlled-NOT gate. The techniques described are non-specific and could be applied to other optical circuits or quantum computing architectures.Comment: 4 pages, 2 figures, REVTeX (published version

    Strongly enhanced photon collection from diamond defect centres under micro-fabricated integrated solid immersion lenses

    Get PDF
    The efficiency of collecting photons from optically active defect centres in bulk diamond is greatly reduced by refraction and reflection at the diamond-air interface. We report on the fabrication and measurement of a geometrical solution to the problem; integrated solid immersion lenses (SILs) etched directly into the surface of diamond. An increase of a factor of 10 was observed in the saturated count-rate from a single negatively charged nitrogen-vacancy (NV-) within a 5um diameter SIL compared with NV-s under a planar surface in the same crystal. A factor of 3 reduction in background emission was also observed due to the reduced excitation volume with a SIL present. Such a system is potentially scalable and easily adaptable to other defect centres in bulk diamond.Comment: 5 Pages, 5 figures (4 subfigures) - corrected typ

    Lens or Binary? Chandra Observations of the Wide Separation Broad Absorption Line Quasar Pair UM425

    Full text link
    We have obtained a 110 ksec Chandra ACIS-S exposure of UM425, a pair of QSOs at z=1.47 separated by 6.5 arcsec, which show remarkably similar emission and broad absorption line (BAL) profiles in the optical/UV. Our 5000 count X-ray spectrum of UM425A (the brighter component) is well-fit with a power law (photon spectral index Gamma=2.0) partially covered by a hydrogen column of 3.8x10^22 cm^-2. The underlying power-law slope for this object and for other recent samples of BALQSOs is typical of radio-quiet quasars, lending credence to the hypothesis that BALs exist in every quasar. Assuming the same Gamma for the much fainter image of UM425B, we detect an obscuring column 5 times larger. We search for evidence of an appropriately large lensing mass in our Chandra image and find weak diffuse emission near the quasar pair, with an X-ray flux typical of a group of galaxies at redshift z ~ 0.6. From our analysis of archival HST WFPC2 and NICMOS images, we find no evidence for a luminous lensing galaxy, but note a 3-sigma excess of galaxies in the UM425 field with plausible magnitudes for a z=0.6 galaxy group. However, the associated X-ray emission does not imply sufficient mass to produce the observed image splitting. The lens scenario thus requires a dark (high M/L ratio) lens, or a fortuitous configuration of masses along the line of sight. UM425 may instead be a close binary pair of BALQSOs, which would boost arguments that interactions and mergers increase nuclear activity and outflows.Comment: 13 pages, 9 figures, Accepted for publication in the Astrophysical Journa

    A simple scheme for expanding photonic cluster states for quantum information

    Get PDF
    We show how an entangled cluster state encoded in the polarization of single photons can be straightforwardly expanded by deterministically entangling additional qubits encoded in the path degree of freedom of the constituent photons. This can be achieved using a polarization--path controlled-phase gate. We experimentally demonstrate a practical and stable realization of this approach by using a Sagnac interferometer to entangle a path qubit and polarization qubit on a single photon. We demonstrate precise control over phase of the path qubit to change the measurement basis and experimentally demonstrate properties of measurement-based quantum computing using a 2 photon, 3 qubit cluster state

    The SSS phase of RS Ophiuchi observed with Chandra and XMM-Newton I.: Data and preliminary Modeling

    Full text link
    The phase of Super-Soft-Source (SSS) emission of the sixth recorded outburst of the recurrent nova RS Oph was observed twice with Chandra and once with XMM-Newton. The observations were taken on days 39.7, 54.0, and 66.9 after outburst. We confirm a 35-sec period on day 54.0 and found that it originates from the SSS emission and not from the shock. We discus the bound-free absorption by neutral elements in the line of sight, resonance absorption lines plus self-absorbed emission line components, collisionally excited emission lines from the shock, He-like intersystem lines, and spectral changes during an episode of high-amplitude variability. We find a decrease of the oxygen K-shell absorption edge that can be explained by photoionization of oxygen. The absorption component has average velocities of -1286+-267 km/s on day 39.7 and of -771+-65 km/s on day 66.9. The wavelengths of the emission line components are consistent with their rest wavelengths as confirmed by measurements of non-self absorbed He-like intersystem lines. We have evidence that these lines originate from the shock rather than the outer layers of the outflow and may be photoexcited in addition to collisional excitations. We found collisionally excited emission lines that are fading at wavelengths shorter than 15A that originate from the radiatively cooling shock. On day 39.5 we find a systematic blue shift of -526+-114 km/s from these lines. We found anomalous He-like f/i ratios which indicates either high densities or significant UV radiation near the plasma where the emission lines are formed. During the phase of strong variability the spectral hardness light curve overlies the total light curve when shifted by 1000sec. This can be explained by photoionization of neutral oxygen in the line of sight if the densities of order 10^{10}-10^{11} cm^{-3}.Comment: 16 pages, 10 figures, 4 tables. Accepted by ApJ; v2: Co-author Woodward adde
    corecore