6,144 research outputs found

    Occam's Quantum Strop: Synchronizing and Compressing Classical Cryptic Processes via a Quantum Channel

    Full text link
    A stochastic process's statistical complexity stands out as a fundamental property: the minimum information required to synchronize one process generator to another. How much information is required, though, when synchronizing over a quantum channel? Recent work demonstrated that representing causal similarity as quantum state-indistinguishability provides a quantum advantage. We generalize this to synchronization and offer a sequence of constructions that exploit extended causal structures, finding substantial increase of the quantum advantage. We demonstrate that maximum compression is determined by the process's cryptic order---a classical, topological property closely allied to Markov order, itself a measure of historical dependence. We introduce an efficient algorithm that computes the quantum advantage and close noting that the advantage comes at a cost---one trades off prediction for generation complexity.Comment: 10 pages, 6 figures; http://csc.ucdavis.edu/~cmg/compmech/pubs/oqs.ht

    Extreme Quantum Advantage for Rare-Event Sampling

    Get PDF
    We introduce a quantum algorithm for efficient biased sampling of the rare events generated by classical memoryful stochastic processes. We show that this quantum algorithm gives an extreme advantage over known classical biased sampling algorithms in terms of the memory resources required. The quantum memory advantage ranges from polynomial to exponential and when sampling the rare equilibrium configurations of spin systems the quantum advantage diverges.Comment: 11 pages, 9 figures; http://csc.ucdavis.edu/~cmg/compmech/pubs/eqafbs.ht

    Optimizing Quantum Models of Classical Channels: The reverse Holevo problem

    Get PDF
    Given a classical channel---a stochastic map from inputs to outputs---the input can often be transformed to an intermediate variable that is informationally smaller than the input. The new channel accurately simulates the original but at a smaller transmission rate. Here, we examine this procedure when the intermediate variable is a quantum state. We determine when and how well quantum simulations of classical channels may improve upon the minimal rates of classical simulation. This inverts Holevo's original question of quantifying the capacity of quantum channels with classical resources. We also show that this problem is equivalent to another, involving the local generation of a distribution from common entanglement.Comment: 13 pages, 6 figures; http://csc.ucdavis.edu/~cmg/compmech/pubs/qfact.htm; substantially updated from v

    Prediction, Retrodiction, and The Amount of Information Stored in the Present

    Get PDF
    We introduce an ambidextrous view of stochastic dynamical systems, comparing their forward-time and reverse-time representations and then integrating them into a single time-symmetric representation. The perspective is useful theoretically, computationally, and conceptually. Mathematically, we prove that the excess entropy--a familiar measure of organization in complex systems--is the mutual information not only between the past and future, but also between the predictive and retrodictive causal states. Practically, we exploit the connection between prediction and retrodiction to directly calculate the excess entropy. Conceptually, these lead one to discover new system invariants for stochastic dynamical systems: crypticity (information accessibility) and causal irreversibility. Ultimately, we introduce a time-symmetric representation that unifies all these quantities, compressing the two directional representations into one. The resulting compression offers a new conception of the amount of information stored in the present.Comment: 17 pages, 7 figures, 1 table; http://users.cse.ucdavis.edu/~cmg/compmech/pubs/pratisp.ht

    Information Accessibility and Cryptic Processes: Linear Combinations of Causal States

    Get PDF
    We show in detail how to determine the time-reversed representation of a stationary hidden stochastic process from linear combinations of its forward-time ϵ\epsilon-machine causal states. This also gives a check for the kk-cryptic expansion recently introduced to explore the temporal range over which internal state information is spread.Comment: 6 pages, 9 figures, 2 tables; http://users.cse.ucdavis.edu/~cmg/compmech/pubs/iacplcocs.ht

    Inversion of stellar statistics equation for the Galactic Bulge

    Get PDF
    A method based on Lucy (1974, AJ 79, 745) iterative algorithm is developed to invert the equation of stellar statistics for the Galactic bulge and is then applied to the K-band star counts from the Two-Micron Galactic Survey in a number of off-plane regions (10 deg.>|b|>2 deg., |l|<15 deg.). The top end of the K-band luminosity function is derived and the morphology of the stellar density function is fitted to triaxial ellipsoids, assuming a non-variable luminosity function within the bulge. The results, which have already been outlined by Lopez-Corredoira et al.(1997, MNRAS 292, L15), are shown in this paper with a full explanation of the steps of the inversion: the luminosity function shows a sharp decrease brighter than M_K=-8.0 mag when compared with the disc population; the bulge fits triaxial ellipsoids with the major axis in the Galactic plane at an angle with the line of sight to the Galactic centre of 12 deg. in the first quadrant; the axial ratios are 1:0.54:0.33, and the distance of the Sun from the centre of the triaxial ellipsoid is 7860 pc. The major-minor axial ratio of the ellipsoids is found not to be constant. However, the interpretation of this is controversial. An eccentricity of the true density-ellipsoid gradient and a population gradient are two possible explanations. The best fit for the stellar density, for 1300 pc<t<3000 pc, are calculated for both cases, assuming an ellipsoidal distribution with constant axial ratios, and when K_z is allowed to vary. From these, the total number of bulge stars is ~ 3 10^{10} or ~ 4 10^{10}, respectively.Comment: 19 pages, 23 figures, accepted in MNRA

    Block CUR: Decomposing Matrices using Groups of Columns

    Full text link
    A common problem in large-scale data analysis is to approximate a matrix using a combination of specifically sampled rows and columns, known as CUR decomposition. Unfortunately, in many real-world environments, the ability to sample specific individual rows or columns of the matrix is limited by either system constraints or cost. In this paper, we consider matrix approximation by sampling predefined \emph{blocks} of columns (or rows) from the matrix. We present an algorithm for sampling useful column blocks and provide novel guarantees for the quality of the approximation. This algorithm has application in problems as diverse as biometric data analysis to distributed computing. We demonstrate the effectiveness of the proposed algorithms for computing the Block CUR decomposition of large matrices in a distributed setting with multiple nodes in a compute cluster, where such blocks correspond to columns (or rows) of the matrix stored on the same node, which can be retrieved with much less overhead than retrieving individual columns stored across different nodes. In the biometric setting, the rows correspond to different users and columns correspond to users' biometric reaction to external stimuli, {\em e.g.,}~watching video content, at a particular time instant. There is significant cost in acquiring each user's reaction to lengthy content so we sample a few important scenes to approximate the biometric response. An individual time sample in this use case cannot be queried in isolation due to the lack of context that caused that biometric reaction. Instead, collections of time segments ({\em i.e.,} blocks) must be presented to the user. The practical application of these algorithms is shown via experimental results using real-world user biometric data from a content testing environment.Comment: shorter version to appear in ECML-PKDD 201

    Recent Decisions

    Get PDF

    Surveying structural complexity in quantum many-body systems

    Full text link
    Quantum many-body systems exhibit a rich and diverse range of exotic behaviours, owing to their underlying non-classical structure. These systems present a deep structure beyond those that can be captured by measures of correlation and entanglement alone. Using tools from complexity science, we characterise such structure. We investigate the structural complexities that can be found within the patterns that manifest from the observational data of these systems. In particular, using two prototypical quantum many-body systems as test cases - the one-dimensional quantum Ising and Bose-Hubbard models - we explore how different information-theoretic measures of complexity are able to identify different features of such patterns. This work furthers the understanding of fully-quantum notions of structure and complexity in quantum systems and dynamics.Comment: 9 pages, 5 figure
    corecore