We introduce an ambidextrous view of stochastic dynamical systems, comparing
their forward-time and reverse-time representations and then integrating them
into a single time-symmetric representation. The perspective is useful
theoretically, computationally, and conceptually. Mathematically, we prove that
the excess entropy--a familiar measure of organization in complex systems--is
the mutual information not only between the past and future, but also between
the predictive and retrodictive causal states. Practically, we exploit the
connection between prediction and retrodiction to directly calculate the excess
entropy. Conceptually, these lead one to discover new system invariants for
stochastic dynamical systems: crypticity (information accessibility) and causal
irreversibility. Ultimately, we introduce a time-symmetric representation that
unifies all these quantities, compressing the two directional representations
into one. The resulting compression offers a new conception of the amount of
information stored in the present.Comment: 17 pages, 7 figures, 1 table;
http://users.cse.ucdavis.edu/~cmg/compmech/pubs/pratisp.ht