403 research outputs found

    Deception and self-awareness

    Get PDF
    This paper presents a study conducted for the Shades of Grey EPSRC research project (EP/H02302X/1), which aims to develop a suite of interventions for identifying terrorist activities. The study investigated the body movements demonstrated by participants while waiting to be interviewed, in one of two conditions: preparing to lie or preparing to tell the truth. The effect of self-awareness was also investigated, with half of the participants sitting in front of a full length mirror during the waiting period. The other half faced a blank wall. A significant interaction was found for the duration of hand/arm movements between the deception and self-awareness conditions (F=4.335, df=1;76, p<0.05). Without a mirror, participants expecting to lie spent less time moving their hands than those expecting to tell the truth; the opposite was seen in the presence of a mirror. This finding indicates a new research area worth further investigation

    Topological Phenomena in the Real Periodic Sine-Gordon Theory

    Full text link
    The set of real finite-gap Sine-Gordon solutions corresponding to a fixed spectral curve consists of several connected components. A simple explicit description of these components obtained by the authors recently is used to study the consequences of this property. In particular this description allows to calculate the topological charge of solutions (the averaging of the xx-derivative of the potential) and to show that the averaging of other standard conservation laws is the same for all components.Comment: LaTeX, 18 pages, 3 figure

    On Separation of Variables for Integrable Equations of Soliton Type

    Get PDF
    We propose a general scheme for separation of variables in the integrable Hamiltonian systems on orbits of the loop algebra sl(2,C)×P(λ,λ1)\mathfrak{sl}(2,\Complex)\times \mathcal{P}(\lambda,\lambda^{-1}). In particular, we illustrate the scheme by application to modified Korteweg--de Vries (MKdV), sin(sinh)-Gordon, nonlinear Schr\"odinger, and Heisenberg magnetic equations.Comment: 22 page

    Whole exome sequencing in patients with Williams-Beuren syndrome followed by disease modeling in mice points to four novel pathways that may modify stenosis risk

    Get PDF
    Supravalvular aortic stenosis (SVAS) is a narrowing of the aorta caused by elastin (ELN) haploinsufficiency. SVAS severity varies among patients with Williams-Beuren syndrome (WBS), a rare disorder that removes one copy of ELN and 25-27 other genes. Twenty percent of children with WBS require one or more invasive and often risky procedures to correct the defect while 30% have no appreciable stenosis, despite sharing the same basic genetic lesion. There is no known medical therapy. Consequently, identifying genes that modify SVAS offers the potential for novel modifier-based therapeutics. To improve statistical power in our rare-disease cohort (N = 104 exomes), we utilized extreme-phenotype cohorting, functional variant filtration and pathway-based analysis. Gene set enrichment analysis of exome-wide association data identified increased adaptive immune system variant burden among genes associated with SVAS severity. Additional enrichment, using only potentially pathogenic variants known to differ in frequency between the extreme phenotype subsets, identified significant association of SVAS severity with not only immune pathway genes, but also genes involved with the extracellular matrix, G protein-coupled receptor signaling and lipid metabolism using both SKAT-O and RQTest. Complementary studies in Eln+/-; Rag1-/- mice, which lack a functional adaptive immune system, showed improvement in cardiovascular features of ELN insufficiency. Similarly, studies in mixed background Eln+/- mice confirmed that variations in genes that increase elastic fiber deposition also had positive impact on aortic caliber. By using tools to improve statistical power in combination with orthogonal analyses in mice, we detected four main pathways that contribute to SVAS risk

    Lifeworld Inc. : and what to do about it

    Get PDF
    Can we detect changes in the way that the world turns up as they turn up? This paper makes such an attempt. The first part of the paper argues that a wide-ranging change is occurring in the ontological preconditions of Euro-American cultures, based in reworking what and how an event is produced. Driven by the security – entertainment complex, the aim is to mass produce phenomenological encounter: Lifeworld Inc as I call it. Swimming in a sea of data, such an aim requires the construction of just enough authenticity over and over again. In the second part of the paper, I go on to argue that this new world requires a different kind of social science, one that is experimental in its orientation—just as Lifeworld Inc is—but with a mission to provoke awareness in untoward ways in order to produce new means of association. Only thus, or so I argue, can social science add to the world we are now beginning to live in

    Identification of Circulating Bacterial Antigens by In Vivo Microbial Antigen Discovery

    Get PDF
    Detection of microbial antigens in clinical samples can lead to rapid diagnosis of an infection and administration of appropriate therapeutics. A major barrier in diagnostics development is determining which of the potentially hundreds or thousands of antigens produced by a microbe are actually present in patient samples in detectable amounts against a background of innumerable host proteins. In this report, we describe a strategy, termed in vivo microbial antigen discovery (InMAD), that we used to identify circulating bacterial antigens. This technique starts with “InMAD serum,” which is filtered serum that has been harvested from BALB/c mice infected with a bacterial pathogen. The InMAD serum, which is free of whole bacterial cells, is used to immunize syngeneic BALB/c mice. The resulting “InMAD immune serum” contains antibodies specific for the soluble microbial antigens present in sera from the infected mice. The InMAD immune serum is then used to probe blots of bacterial lysates or bacterial proteome arrays. Bacterial antigens that are reactive with the InMAD immune serum are precisely the antigens to target in an antigen immunoassay. By employing InMAD, we identified multiple circulating antigens that are secreted or shed during infection using Burkholderia pseudomallei and Francisella tularensis as model organisms. Potential diagnostic targets identified by the InMAD approach included bacterial proteins, capsular polysaccharide, and lipopolysaccharide. The InMAD technique makes no assumptions other than immunogenicity and has the potential to be a broad discovery platform to identify diagnostic targets from microbial pathogens

    Deception in context: coding nonverbal cues, situational variables and risk of detection

    Get PDF
    There are many situations in which deception may arise and understanding the behaviors associated with it are compounded by various contexts in which it may occur. This paper sets out a coding protocol for identifying cues to deception and reports on three studies, in which deception was studied in different contexts. The contexts involved manipulating risks (i.e., probability) of being detected and reconnaissance, both of which are related to terrorist activities. Two of the studies examined the impact of changing the risks of deception detection, whilst the third investigated increased cognitive demand of duplex deception tasks including reconnaissance and deception. In all three studies, cues to deception were analyzed in relation to observable body movements and subjective impressions given by participants. In general, the results indicate a pattern of hand movement reduction by deceivers, and suggest the notion that raising the risk of detection influences deceivers? behaviors. Participants in the higher risk condition displayed increased negative affect (found in deceivers) and tension (found in both deceivers and truth-tellers) than those in lower risk conditions

    A Sensitive High-Throughput Assay for Evaluating Host-Pathogen Interactions in Cryptococcus neoformans Infection

    Get PDF
    Background: Cryptococcus neoformans causes serious disease in immunocompromised individuals, leading to over 600,000 deaths per year worldwide. Part of this impact is due to the organism’s ability to thwart what should be the mammalian hosts ’ first line of defense against cryptococcal infection: internalization by macrophages. Even when C. neoformans is engulfed by host phagocytes, it can survive and replicate within them rather than being destroyed; this ability is central in cryptococcal virulence. It is therefore critical to elucidate the interactions of this facultative intracellular pathogen with phagocytic cells of its mammalian host. Methodology/Principal Findings: To accurately assess initial interactions between human phagocytic cells and fungi, we have developed a method using high-throughput microscopy to efficiently distinguish adherent and engulfed cryptococci and quantitate each population. This method offers significant advantages over currently available means of assaying hostfungal cell interactions, and remains statistically robust when implemented in an automated fashion appropriate for screening. It was used to demonstrate the sensitivity of human phagocytes to subtle changes in the cryptococcal capsule, a major virulence factor of this pathogen. Conclusions/Significance: Our high-throughput method for characterizing interactions between C. neoformans and mammalian phagocytic cells offers a powerful tool for elucidating the relationship between these cell types durin

    Contrasting levels of β‐diversity and underlying phylogenetic trends indicate different paths to chemical diversity in highland and lowland willow species

    Get PDF
    Diverse specialised metabolites contributed to the success of vascular plants in colonising most terrestrial habitats. Understanding how distinct aspects of chemical diversity arise through heterogeneous environmental pressures can help us understand the effects of abiotic and biotic stress on plant evolution and community assembly. We examined highland and lowland willow species within a phylogenetic framework to test for trends in their chemical α-diversity (richness) and β-diversity (variation among species sympatric in elevation). We show that differences in chemistry among willows growing at different elevations occur mainly through shifts in chemical β-diversity and due to convergence or divergence among species sharing their elevation level. We also detect contrasting phylogenetic trends in concentration and α-diversity of metabolites in highland and lowland willow species. The resulting elevational patterns contribute to the chemical diversity of willows and suggest that variable selective pressure across ecological gradients may, more generally, underpin complex changes in plant chemistry
    corecore