960 research outputs found

    3D MHD Modeling of the Gaseous Structure of the Galaxy: Setup and Initial Results

    Get PDF
    We show the initial results of our 3D MHD simulations of the flow of the Galactic atmosphere as it responds to a spiral perturbation in the potential. In our standard case, as the gas approaches the arm, there is a downward converging flow that terminates in a complex of shocks just ahead of the midplane density peak. The density maximum slants forward at high z, preceeded by a similarly leaning shock. The latter diverts the flow upward and over the arm, as in a hydraulic jump. Behind the gaseous arm, the flow falls again, generating further secondary shocks as it approaches the lower z material. Structures similar to the high z part of the gaseous arms are found in the interarm region of our two-armed case, while broken arms and low column density bridges are present in the four-armed case. We present three examples of what can be learned from these models.Comment: 33 pages, 17 figures. Accepted for publication in Apj. Better quality images in http://www.journals.uchicago.edu/ApJ/journal/preprints/ApJ55782.preprint.pd

    Ti and Zr amino-tris(phenolate) catalysts for the synthesis of cyclic carbonates from CO2 and epoxides

    Get PDF
    Herein, we report the application of four amino-tris(phenolate)-based metal complexes incorporating Ti(IV) or Zr(IV) centres (2a-3b) as homogeneous catalysts for the conversion of CO2 and epoxides into cyclic carbonates. The four complexes were synthesised, characterised and then evaluated in combination with tetrabutylammonium iodide, bromide or chloride as binary catalytic systems for the reaction of CO2 with 1,2-epoxyhexane as epoxide substrate at 12 bar CO2 pressure and 90 °C for 2 h. The catalytic systems comprising the two Ti(IV) complexes (2a and 2b) showed similar performance. One notable exception was the catalytic system consisting of titanium complex 2b, bearing an axial Cl-ligand, and tetrabutylammonium chloride, which displayed higher catalytic activity compared to other titanium-based systems. Even higher activity was achieved with Zr(IV) complex 3a, bearing an axial isopropoxide ligand, which reached turnover numbers (TONmetal) up to 1920 for the reaction of CO2 with 1,2-epoxyhexane at 12 bar CO2 pressure and 90 °C for 2 h. This performance is comparable with that of state-of-the-art catalysts for this reaction. The catalytic system consisting of complex 3a and tetrabutylammonium bromide was explored further by investigating its applicability with a broad substrate scope, achieving quantitative conversion of several epoxides with CO2 into cyclic carbonate products at 90 °C and 12 bar CO2 pressure for 18 h. The selectivity towards the cyclic carbonate products was ≥ 98% for all studied terminal epoxides and ≥ 80% for all examined cyclohexene-type epoxides

    The Kinematically Measured Pattern Speeds of NGC 2523 and NGC 4245

    Full text link
    We have applied the Tremaine-Weinberg continuity equation method to derive the bar pattern speed in the SB(r)b galaxy NGC 2523 and the SB(r)0/a galaxy NGC 4245 using the Calcium Triplet absorption lines. These galaxies were selected because they have strong inner rings which can be used as independent tracers of the pattern speed. The pattern speed of NGC 2523 is 26.4 ±\pm 6.1 km s1^{-1} kpc1^{-1}, assuming an inclination of 49.7^{\circ} and a distance of 51.0 Mpc. The pattern speed of NGC 4245 is 75.5 ±\pm 31.3 km s1^{-1} kpc1^{-1}, assuming an inclination of 35.4^{\circ} and a distance of 12.6 Mpc. The ratio of the corotation radius to the bar radius of NGC 2523 and NGC 4245 is 1.4 ±\pm 0.3 and 1.1 ±\pm 0.5, respectively. These values place the bright inner rings near and slightly inside the corotation radius, as predicted by barred galaxy theory. Within the uncertainties, both galaxies are found to have fast bars that likely indicate dark halos of low central concentration. The photometric properties, bar strengths, and disk stabilities of both galaxies are also discussed.Comment: Accepted for publication in The Astronomical Journal, 11 figures, 2 table

    Integral Field Unit Observations of NGC 891: Kinematics of the Diffuse Ionized Gas Halo

    Get PDF
    We present high and moderate spectral resolution spectroscopy of diffuse ionized gas (DIG) emission in the halo of NGC 891. The data were obtained with the SparsePak integral field unit at the WIYN Observatory. The wavelength coverage includes the [NII]6548,6583, Halpha, and [SII]6716,6731 emission lines. Position-velocity (PV) diagrams, constructed using spectra extracted from four SparsePak pointings in the halo, are used to examine the kinematics of the DIG. Using two independent methods, a vertical gradient in azimuthal velocity is found to be present in the northeast quadrant of the halo, with magnitude approximately 15-18 km/s/kpc, in agreement with results from HI observations. The kinematics of the DIG suggest that this gradient begins at approximately 1 kpc above the midplane. In another part of the halo, the southeast quadrant, the kinematics are markedly different, and suggest rotation at about 175 km/s, much slower than the disk but with no vertical gradient. We utilize an entirely ballistic model of disk-halo flow in an attempt to reproduce the kinematics observed in the northeast quadrant. Analysis shows that the velocity gradient predicted by the ballistic model is far too shallow. Based on intensity cuts made parallel to the major axis in the ballistic model and an Halpha image of NGC 891 from the literature, we conclude that the DIG halo is much more centrally concentrated than the model, suggesting that hydrodynamics dominate over ballistic motion in shaping the density structure of the halo. Velocity dispersion measurements along the minor axis of NGC 891 seem to indicate a lack of radial motions in the halo, but the uncertainties do not allow us to set firm limits.Comment: 31 pages, 10 figures. Accepted for publication in the Astrophysical Journa

    Star formation thresholds and galaxy edges: why and where

    Full text link
    We study global star formation thresholds in the outer parts of galaxies by investigating the stability of disk galaxies embedded in dark halos. The disks are self-gravitating, contain metals and dust, and are exposed to UV radiation. We find that the critical surface density for the existence of a cold interstellar phase depends only weakly on the parameters of the model and coincides with the empirically derived surface density threshold for star formation. Furthermore, it is shown that the drop in the thermal velocity dispersion associated with the transition from the warm to the cold gas phase triggers gravitational instability on a wide range of scales. The presence of strong turbulence does not undermine this conclusion if the disk is self-gravitating. Models based on the hypothesis that the onset of thermal instability determines the star formation threshold in the outer parts of galaxies can reproduce many observations, including the threshold radii, column densities, and the sizes of stellar disks as a function of disk scale length and mass. Finally, prescriptions are given for implementing star formation thresholds in (semi-)analytic models and three-dimensional hydrodynamical simulations of galaxy formation.Comment: 16 pages, 6 figures, accepted for publication in the Astrophysical Journal. Version 2: text significantly revised (major improvements), physics unchanged. Version 3: minor correction

    HALOGAS observations of NGC 5023 and UGC 2082: Modeling of non-cylindrically symmetric gas distributions in edge-on galaxies

    Get PDF
    In recent years it has become clear that the vertical structure of disk galaxies is a key ingredient for understanding galaxy evolution. In particular, the presence and structure of extra-planar gas has been a focus of research. The Hydrogen Accretion in LOcal GAlaxieS (HALOGAS) survey aims to provide a census on the rate of cold neutral gas accretion in nearby galaxies as well as a statistically significant set of galaxies that can be investigated for their extra-planar gas properties. In order to better understand the the vertical structure of the neutral hydrogen in the two edge-on HALOGAS galaxies NGC 5023 and UGC 2082 we construct detailed tilted ring models. The addition of distortions resembling arcs or spiral arms significantly improves the fit of the models to these galaxies. In the case of UGC 2082 no vertical gradient in rotational velocity is required in either symmetric models nor non-symmetric models to match the observations. The best fitting model features two arcs of large vertical extent that may be due to accretion. In the case of NGC 5023 a vertical gradient is required in symmetric models (dV/dz =14.9±3.8-14.9\pm3.8 km s1^{-1} kpc1^{-1}) and its magnitude is significantly lowered when non-symmetric models are considered (dV/dz =9.4±3.8-9.4\pm3.8 km s1^{-1} kpc1^{-1}). Additionally it is shown that the underlying disk of NGC 5023 can be made symmetric, in all parameters except the warp, in non-symmetric models. In comparison to the "classical" modeling these models fit the data significantly better with a limited addition of free parameters.Comment: 27 Pages, 22 Figures. Accepted for publication in MNRA

    Agent based demand flexibility management for wind power forecasting error mitigation using the SG-BEMS framework

    Get PDF
    The integration process of renewable energy sources (RES) and distributed energy resources (DER) into the power system, is characterized by concerns that originate from their stochastic and uncontrollable nature. This means that system operators require reliable forecasting tools, in order to ensure efficient and reliable operation. Accordingly, this paper proposes the use of demand flexibility, to counteract the RES forecasting errors. For this purpose, distributed and decentralized intelligence is used, via the SG-BEMS framework, to invoke demand flexibility in a timely and effective fashion, while taking into account the negative effects on the building occupants comfort. Lastly, numerical results from a simulated case of study are presented, which confirm that demand flexibility can be used to mitigate the magnitude of forecast errors

    Екслібриси Станіслава Шодуара на книжках родового бібліотечного зібрання Шодуарів у фондах НБУВ

    Get PDF
    Проаналізовано екслібриси з рукописно-книжкового зібрання найвідомішого представника роду баронів Шодуарів – Станіслава Шодуара, зокрема, здійснений їх книгознавчий та мистецтвознавчий аналіз, визначено кількість та різновиди екслібрисів Станіслава Шодуара у різні періоди, атрибутовано авторство, встановлено роль екслібрисів у контексті формування та розвитку зібрання першої половини ХІХ ст.The author performs the analysis of the bookplates from the manuscript and book collection of the most famous member of the Chaudoir family – Stanislav Chaudoir. In particular, their bibliological and art analysis is carried out, the number and kinds of Chaudoir’s bookplates are defined, the authorship is attributed, the role of bookplates in the context of formation and growth of the collection if the 1st half of the 19th century is ascertained

    A dust component 2 kpc above the plane in NGC 891

    Get PDF
    The halo of NGC 891 has been the subject of studies for more than a decade. One of its most striking features is the large asymmetry in Hα\alpha emission. In this letter, we will take a quantitative look at this asymmetry at different wavelengths for the first time. We suggest that NGC 891 is intrinsically almost symmetric and the large asymmetry in Hα\alpha emission is mostly due to dust attenuation. We will quantify the additional optical depth needed to cause the observed asymmetry in this model. By comparing large strips on the North East side of the galaxy with strips covering the same area in the South West we can quantify and analyze the asymmetry in the different wavelengths. From the 24 μ\mum emission we find that the intrinsic asymmetry in star formation in NGC 891 is small i.e., 30\sim 30%. The additional asymmetry in Hα\alpha is modeled as additional symmetric dust attenuation which extends up to \sim 40\arcsec (1.9 kpc) above the plane of the galaxy with a mid-plane value of τ\tau=0.8 and a scale height of 0.5 kpcComment: A&A in press. 5 pages, 3 figure
    corecore