29,244 research outputs found

    Low-dimensional models for turbulent plane Couette flow in a minimal flow unit

    Get PDF
    We model turbulent plane Couette flow in the minimal flow unit (MFU) – a domain whose spanwise and streamwise extent is just sufficient to maintain turbulence – by expanding the velocity field as a sum of optimal modes calculated via proper orthogonal decomposition from numerical data. Ordinary differential equations are obtained by Galerkin projection of the Navier–Stokes equations onto these modes. We first consider a 6-mode (11-dimensional) model and study the effects of including losses to neglected modes. Ignoring these, the model reproduces turbulent statistics acceptably, but fails to reproduce dynamics; including them, we find a stable periodic orbit that captures the regeneration cycle dynamics and agrees well with direct numerical simulations. However, restriction to as few as six modes artificially constrains the relative magnitudes of streamwise vortices and streaks and so cannot reproduce stability of the laminar state or properly account for bifurcations to turbulence as Reynolds number increases. To address this issue, we develop a second class of models based on ‘uncoupled’ eigenfunctions that allow independence among streamwise and cross-stream velocity components. A 9-mode (31-dimensional) model produces bifurcation diagrams for steady and periodic states in qualitative agreement with numerical Navier–Stokes solutions, while preserving the regeneration cycle dynamics. Together, the models provide empirical evidence that the ‘backbone’ for MFU turbulence is a periodic orbit, and support the roll–streak–breakdown–roll reformation picture of shear-driven turbulence

    DYNAMIC LEARNING AND CONTEXT-DEPENDENCE IN SEQUENTIAL, ATTRIBUTE-BASED CONTINGENT VALUATION

    Get PDF
    A hybrid stated-preference model is developed that combines the referendum contingent valuation response format with an experimentally designed set of attributes. A sequence of valuation questions is asked to a random sample in a mail-out mail-back format. Econometric analysis shows that willingness to pay for policy attributes is formed dynamically.Research Methods/ Statistical Methods,

    Natural laminar flow experiments on modern airplane surfaces

    Get PDF
    Flight and wind-tunnel natural laminar flow experiments have been conducted on various lifting and nonlifting surfaces of several airplanes at unit Reynolds numbers between 0.63 x 10 to the 6th power/ft and 3.08 x 10 to the 6th power/ft, at Mach numbers from 0.1 to 0.7, and at lifting surface leading-edge sweep angles from 0 deg to 63 deg. The airplanes tested were selected to provide relatively stiff skin conditions, free from significant roughness and waviness, on smooth modern production-type airframes. The observed transition locations typically occurred downstream of the measured or calculated pressure peak locations for the test conditions involved. No discernible effects on transition due to surface waviness were observed on any of the surfaces tested. None of the measured heights of surface waviness exceeded the empirically predicted allowable surface waviness. Experimental results consistent with spanwise contamination criteria were observed. Large changes in flight-measured performance and stability and control resulted from loss of laminar flow by forced transition. Rain effects on the laminar boundary layer caused stick-fixed nose-down pitch-trim changes in two of the airplanes tested. No effect on transition was observed for flight through low-altitude liquid-phase clouds. These observations indicate the importance of fixed-transition tests as a standard flight testing procedure for modern smooth airframes

    Curvature-Induced Instabilities of Shells

    Full text link
    Induced by proteins within the cell membrane or by differential growth, heating, or swelling, spontaneous curvatures can drastically affect the morphology of thin bodies and induce mechanical instabilities. Yet, the interaction of spontaneous curvature and geometric frustration in curved shells remains still poorly understood. Via a combination of precision experiments on elastomeric spherical bilayer shells, simulations, and theory, we show a spontaneous curvature-induced rotational symmetry-breaking as well as a snapping instability reminiscent of the Venus fly trap closure mechanism. The instabilities and their dependence on geometry are rationalized by reducing the spontaneous curvature to an effective mechanical load. This formulation reveals a combined pressurelike bulk term and a torquelike boundary term, allowing scaling predictions for the instabilities in excellent agreement with experiments and simulations. Moreover, the effective pressure analogy suggests a curvature-induced buckling in closed shells. We determine the critical buckling curvature via a linear stability analysis that accounts for the combination of residual membrane and bending stresses. The prominent role of geometry in our findings suggests the applicability of the results over a wide range of scales.Comment: 12 pages, 9 figures (including Supporting Information

    Use of 2G coated conductors for efficient shielding of DC magnetic fields

    Full text link
    This paper reports the results of an experimental investigation of the performance of two types of magnetic screens assembled from YBa2Cu3O7-d (YBCO) coated conductors. Since effective screening of the axial DC magnetic field requires the unimpeded flow of an azimuthal persistent current, we demonstrate a configuration of a screening shell made out of standard YBCO coated conductor capable to accomplish that. The screen allows the persistent current to flow in the predominantly azimuthal direction at a temperature of 77 K. The persistent screen, incorporating a single layer of superconducting film, can attenuate an external magnetic field of up to 5 mT by more than an order of magnitude. For comparison purposes, another type of screen which incorporates low critical temperature quasi-persistent joints was also built. The shielding technique we describe here appears to be especially promising for the realization of large scale high-Tc superconducting screens.Comment: 8 pages, 3 figure

    Latin American universities in a time of crisis: Responses from the arts, humanities, and social sciences

    Get PDF
    Drawing on the Brazilian context, we discuss the crisis facing Latin American Universities, where the Arts, Humanities, and Social Sciences have been deemed ‘useless’ by populist politicians, who instead favour technicist, neoliberal approaches to education that will produce graduates capable of bolstering a struggling economy. And yet, these disciplines are central to addressing global issues and challenges, and crucial in universities in promoting internationalisation and intercultural collaboration among faculty and students. Paradoxically, covid-19 also offers opportunities for universities in Latin America to internationalise and share resources through the delivery of online programmes, and other virtual exchanges, networks, and collaborations. In this essay, we aim to show how education, embedded in the Arts, Humanities, and Social Sciences, and drawing on virtual exchange, can address difference, diversity, marginalisation and exclusion to open up intercultural understanding and communication, especially where young people face conditions of conflict, forced migration, and occupation. Second, we highlight how these forms of education can facilitate intercultural understanding, thereby enhancing critical, participatory, and responsible citizenship in young people. We describe a project, grounded in critical intercultural pedagogy (Freire, 1970), which eschews discourses of competence and employability, and instead involves faculty-student collaboration and coproduction in the Arts, Humanities, and Social Sciences to promote intercultural dialogue. The project included a multinational, multidisciplinary, multilingual researcher and student network in seven universities: three in Latin America as well as one in Palestine, one in the United Kingdom, and two in Turkey. We illustrate our approach through two case studies from the project: an intercultural language learning programme in Colombia, inspired by Boal’s (1979) Theatre of the Oppressed ; and a critical intercultural online exchange using flash fiction, poetry, and identity narratives. Our essay offers inspiration to researchers, teachers of languages and intercultural education, policymakers, and others interested in internationalisation in universities on the value of the Arts, Humanities, and Social Sciences in promoting international cooperation and understanding within and beyond Latin America

    Gravitational wave recoil in Robinson-Trautman spacetimes

    Full text link
    We consider the gravitational recoil due to non-reflection-symmetric gravitational wave emission in the context of axisymmetric Robinson-Trautman spacetimes. We show that regular initial data evolve generically into a final configuration corresponding to a Schwarzschild black-hole moving with constant speed. For the case of (reflection-)symmetric initial configurations, the mass of the remnant black-hole and the total energy radiated away are completely determined by the initial data, allowing us to obtain analytical expressions for some recent numerical results that have been appeared in the literature. Moreover, by using the Galerkin spectral method to analyze the non-linear regime of the Robinson-Trautman equations, we show that the recoil velocity can be estimated with good accuracy from some asymmetry measures (namely the first odd moments) of the initial data. The extension for the non-axisymmetric case and the implications of our results for realistic situations involving head-on collision of two black holes are also discussed.Comment: 9 pages, 6 figures, final version to appear in PR
    corecore