6,008 research outputs found

    The Quasar-frame Velocity Distribution of Narrow CIV Absorbers

    Full text link
    We report on a survey for narrow (FWHM < 600 km/s) CIV absorption lines in a sample of bright quasars at redshifts 1.8≤z<2.251.8 \le z < 2.25 in the Sloan Digital Sky Survey. Our main goal is to understand the relationship of narrow CIV absorbers to quasar outflows and, more generally, to quasar environments. We determine velocity zero-points using the broad MgII emission line, and then measure the absorbers' quasar-frame velocity distribution. We examine the distribution of lines arising in quasar outflows by subtracting model fits to the contributions from cosmologically intervening absorbers and absorption due to the quasar host galaxy or cluster environment. We find a substantial number (≥43±6\ge 43\pm6 per cent) of absorbers with REW >0.3> 0.3 \AA in the velocity range +750 km/s \la v \la +12000 km/s are intrinsic to the AGN outflow. This `outflow fraction' peaks near v=+2000v=+2000 km/s with a value of foutflow≃0.81±0.13f_{outflow} \simeq 0.81 \pm 0.13. At velocities below v≈+2000v \approx +2000 km/s the incidence of outflowing systems drops, possibly due to geometric effects or to the over-ionization of gas that is nearer the accretion disk. Furthermore, we find that outflow-absorbers are on average broader and stronger than cosmologically-intervening systems. Finally, we find that ∼14\sim 14 per cent of the quasars in our sample exhibit narrow, outflowing CIV absorption with REW >0.3> 0.3\AA, slightly larger than that for broad absorption line systems.Comment: 11 pages, 9 figures, accepted for publication in MNRA

    Renormalized coordinate approach to the thermalization process

    Full text link
    We consider a particle in the harmonic approximation coupled linearly to an environment. modeled by an infinite set of harmonic oscillators. The system (particle--environment) is considered in a cavity at thermal equilibrium. We employ the recently introduced notion of renormalized coordinates to investigate the time evolution of the particle occupation number. For comparison we first present this study in bare coordinates. For a long ellapsed time, in both approaches, the occupation number of the particle becomes independent of its initial value. The value of ocupation number of the particle is the physically expected one at the given temperature. So we have a Markovian process, describing the particle thermalization with the environment. With renormalized coordinates no renormalization procedure is required, leading directly to a finite result.Comment: 16 pages, LATEX, 2 figure

    Landslide Risk: Economic Valuation in the North-Eastern Zone of Medellin City

    Get PDF
    Natural disasters of a geodynamic nature can cause enormous economic and human losses. The economic costs of a landslide disaster include relocation of communities and physical repair of urban infrastructure. However, when performing a quantitative risk analysis, generally, the indirect economic consequences of such an event are not taken into account. A probabilistic approach methodology that considers several scenarios of hazard and vulnerability to measure the magnitude of the landslide and to quantify the economic costs is proposed. With this approach, it is possible to carry out a quantitative evaluation of the risk by landslides, allowing the calculation of the economic losses before a potential disaster in an objective, standardized and reproducible way, taking into account the uncertainty of the building costs in the study zone. The possibility of comparing different scenarios facilitates the urban planning process, the optimization of interventions to reduce risk to acceptable levels and an assessment of economic losses according to the magnitude of the damage. For the development and explanation of the proposed methodology, a simple case study is presented, located in north-eastern zone of the city of Medellín. This area has particular geomorphological characteristics, and it is also characterized by the presence of several buildings in bad structural conditions. The proposed methodology permits to obtain an estimative of the probable economic losses by earthquake-induced landslides, taking into account the uncertainty of the building costs in the study zone. The obtained estimative shows that the structural intervention of the buildings produces a reduction the order of 21 % in the total landslide risk. © Published under licence by IOP Publishing Ltd

    Discrete Fracture Model with Anisotropic Load Sharing

    Full text link
    A two-dimensional fracture model where the interaction among elements is modeled by an anisotropic stress-transfer function is presented. The influence of anisotropy on the macroscopic properties of the samples is clarified, by interpolating between several limiting cases of load sharing. Furthermore, the critical stress and the distribution of failure avalanches are obtained numerically for different values of the anisotropy parameter α\alpha and as a function of the interaction exponent γ\gamma. From numerical results, one can certainly conclude that the anisotropy does not change the crossover point γc=2\gamma_c=2 in 2D. Hence, in the limit of infinite system size, the crossover value γc=2\gamma_c=2 between local and global load sharing is the same as the one obtained in the isotropic case. In the case of finite systems, however, for γ≤2\gamma\le2, the global load sharing behavior is approached very slowly

    Diffuse Ionized Gas in the Dwarf Irregular Galaxy DDO 53

    Full text link
    The spectral characteristics throughout the dwarf irregular galaxy DDO 53 are studied. The results are very similar to those for other irregular galaxies: high excitation and low values of the [SII]/Halpha ratio. The most likely ionization source is photon leakage from the classical HII regions, without any other source, although the interstellar medium of the galaxy is quite perturbed. Moreover, the physical conditions throughout the galaxy do not change very much because both the photon leakage percentage and the ionization temperature are very similar. In addition, the determined metal content for two HII regions indicates that DDO 53 is a low-metallicity galaxy.Comment: 32 pages, 9 figures, 7 tables. AJ, in pres

    DNA binding shifts the redox potential of the transcription factor SoxR

    Get PDF
    Electrochemistry measurements on DNA-modified electrodes are used to probe the effects of binding to DNA on the redox potential of SoxR, a transcription factor that contains a [2Fe-2S] cluster and is activated through oxidation. A DNA-bound potential of +200 mV versus NHE (normal hydrogen electrode) is found for SoxR isolated from Escherichia coli and Pseudomonas aeruginosa. This potential value corresponds to a dramatic shift of +490 mV versus values found in the absence of DNA. Using Redmond red as a covalently bound redox reporter affixed above the SoxR binding site, we also see, associated with SoxR binding, an attenuation in the Redmond red signal compared with that for Redmond red attached below the SoxR binding site. This observation is consistent with a SoxR-binding-induced structural distortion in the DNA base stack that inhibits DNA-mediated charge transport to the Redmond red probe. The dramatic shift in potential for DNA-bound SoxR compared with the free form is thus reconciled based on a high-energy conformational change in the SoxR–DNA complex. The substantial positive shift in potential for DNA-bound SoxR furthermore indicates that, in the reducing intracellular environment, DNA-bound SoxR is primarily in the reduced form; the activation of DNA-bound SoxR would then be limited to strong oxidants, making SoxR an effective sensor for oxidative stress. These results more generally underscore the importance of using DNA electrochemistry to determine DNA-bound potentials for redox-sensitive transcription factors because such binding can dramatically affect this key protein property

    Modelling non-dust fluids in cosmology

    Full text link
    Currently, most of the numerical simulations of structure formation use Newtonian gravity. When modelling pressureless dark matter, or `dust', this approach gives the correct results for scales much smaller than the cosmological horizon, but for scenarios in which the fluid has pressure this is no longer the case. In this article, we present the correspondence of perturbations in Newtonian and cosmological perturbation theory, showing exact mathematical equivalence for pressureless matter, and giving the relativistic corrections for matter with pressure. As an example, we study the case of scalar field dark matter which features non-zero pressure perturbations. We discuss some problems which may arise when evolving the perturbations in this model with Newtonian numerical simulations and with CMB Boltzmann codes.Comment: 5 pages; v2: typos corrected and refs added, submitted version; v3: version to appear in JCA
    • …
    corecore