1,149 research outputs found

    B-physics constraints on baryon number violating couplings: grand unification or R-parity violation

    Get PDF
    We investigate the role that baryon number violating interactions may play in BB phenomenology. Present in various grand unified theories, supersymmetric theories with R-parity violation and composite models, a diquark state could be quite light. Using the data on B decays as well as BBˉB - {\bar B} mixing, we find strong constraints on the couplings that such a light diquark state may have with the Standard Model quarks.Comment: 19 pages, latex, no figures, 13 tables include

    Sneutrino Mixing Phenomena

    Get PDF
    In any model with nonzero Majorana neutrino masses, the sneutrino and antisneutrino of the supersymmetric extended theory mix. We outline the conditions under which sneutrino-antisneutrino mixing is experimentally observable. The mass-splitting of the sneutrino mass eigenstates and sneutrino oscillation phenomena are considered.Comment: 12 pages, revtex + axodraw, 1 figure included. Minor change

    Testing the Standard Model and Schemes for Quark Mass Matrices with CP Asymmetries in B Decays

    Full text link
    The values of sin(2α)\sin (2 \alpha) and sin(2β)\sin (2 \beta), where α\alpha and β\beta are angles of the unitarity triangle, will be readily measured in a B factory (and maybe also in hadron colliders). We study the standard model constraints in the sin(2α)sin(2β)\sin (2 \alpha) - \sin (2 \beta) plane. We use the results from recent analyses of fBf_B and τbVcb2\tau_b|V_{cb}|^2 which take into account heavy quark symmetry considerations. We find sin(2β)0.15\sin (2 \beta) \geq 0.15 and most likely \sin (2 \beta) \roughly{>} 0.6, and emphasize the strong correlations between sin(2α)\sin (2 \alpha) and sin(2β)\sin (2 \beta). Various schemes for quark mass matrices allow much smaller areas in the sin(2α)sin(2β)\sin (2 \alpha) - \sin (2 \beta) plane. We study the schemes of Fritzsch, of Dimopoulos, Hall and Raby, and of Giudice, as well as the ``symmetric CKM'' idea, and show how CP asymmetries in B decays will crucially test each of these schemes.Comment: 11 pages and 4 postscript figures available on request, LaTeX, WIS-92/52/Jun-PH, LBL-3256

    Leptonic Flavor and CP Violation

    Get PDF
    We discuss how neutrino oscillation experiments can probe new sources of leptonic flavor and CP violation.Comment: 8 pages, latex, no figures. Invited talk given at KAON 2001, Pisa, Italy, June 12 - 17, 200

    Phenomenology of BsB_s Decays

    Full text link
    Using the QCD sum rules technique we study several aspects of the phenomenology of the b-flavoured strange meson Bs0B_s^0. In particular, we evaluate the mass of the particle, the leptonic constant and the form factors of the decays Bs0Ds+νˉ\overline {B_s^0} \to D^{+}_s \ell^- \bar\nu, Bs0Ds+νˉ\overline {B_s^0} \to D^{*+}_s \ell^- \bar\nu, Bs0K+νˉ\overline {B_s^0} \to K^{*+} \ell^- \bar\nu. We also calculate, in the factorization approximation, a number of two-body non leptonic Bs0\overline {B_s^0} decays.Comment: 19 pages, 2 figures (not included) available upon request, LaTex, BARI-TH/93-139, UTS-DFT-93-1

    Measurement of the K_L \to \pi\mu\nu form factor parameters with the KLOE detector

    Full text link
    Using 328 pb^{-1}of data collected at DAFNE corresponding to \sim 1.8 million KLπμνK_L\to \pi\mu\nu decays, we have measured the Kμ3K_{\mu 3} form factor parameters. The structure of the KπK-\pi vector-current provides information about the dynamics of the strong interaction; its knowledge is necessary for evaluation of the phase-space integral required for measuring the CKM matrix element VusV_{us} and for testing lepton universality in kaon decays. Using a new parametrization for the vector and scalar form factors, we find λ+\lambda_+=\pt(25.7\pm 0.6),-3, and λ0\lambda_0=\pt(14.0\pm 2.1),-3,. Our result for λ0\lambda_0, together with recent lattice calculations of fπf_\pi, fKf_K and f(0)f(0), satisfies the Callan-Trieman relatio

    Very light CP-odd scalar in the Two-Higgs-Doublet Model

    Full text link
    We show that a general two-Higgs-doublet model (THDM) with a very light CP-odd scalar (A) can be compatible with the rho parameter, Br(b --> s\gamma), R_b, A_b, (g-2) of muon, Br(Upsilon --> A gamma), and the direct search via the Yukawa process at LEP. For its mass around 0.2 GeV, the muon (g-2) and Br(Upsilon --> A \gamma) data require tan(beta) to be about 1. Consequently, A can behave like a fermiophobic CP-odd scalar and predominantly decay into a photon pair ("gamma gamma"), which registers in detectors of high energy collider experiments as a single photon signature when the momentum of A is large. We compute the partial decay width of Z --> A A A and the production rate of f \bar{f} --> Z A A --> Z +"gamma gamma", f^' {\bar f} --> W^{\pm} A A --> W^\pm + "gamma gamma" and f \bar f --> H^+ H^- --> W^+ W^- A A --> W^+ W^- + "gamma gamma" at high energy colliders such as LEP, Tevatron, LHC, and future Linear Colliders. Other production mechanisms of a light A, such as gg --> h --> AA --> "gamma gamma", are also discussed.Comment: Some improvementes, references updated, 3 new figures, one new appendix, abstract and conclusions unchaged. Version to appear in Physical Review

    Chiral Perturbation Theory for SU(3) Breaking in Heavy Meson Systems

    Full text link
    The SU(3) breaking effects due to light quark masses on heavy meson masses, decay constants (FD,FDsF_{D}, F_{D_{s}}) and the form factor for semileptonic BD()lνˉl\overline{B}\rightarrow D^{(\ast)} l\bar{\nu}_{l} transitions are formulated in chiral perturbation theory, using a heavy meson effective Lagrangian and expanding in inverse powers of the heavy meson mass. To leading order in this expansion, the leading chiral logarithms and the required counterterms are determined. At this level, a non-analytic correction to the mass splittings of O(p3){\cal O}(p^3) appears, similar the the one found in light baryons. The correction to FDs/FDF_{D_{s}}/F_{D} is roughly estimated to be of the order of 10%10\% and, therefore, experimentally accessible, while the correction to the form factor is likely to be substantially smaller. We explicitly check that the heavy quark symmetry is preserved by the chiral loops.Comment: 21 page

    A global fit to determine the pseudoscalar mixing angle and the gluonium content of the eta' meson

    Full text link
    We update the values of the eta-eta' mixing angle and of the eta' gluonium content by fitting our measurement R_phi = BR(phi to eta' gamma)/ BR(phi to eta gamma) together with several vector meson radiative decays to pseudoscalars (V to P gamma), pseudoscalar mesons radiative decays to vectors (P to V gamma) and the eta' to gamma gamma, pi^0 to gamma gamma widths. From the fit we extract a gluonium fraction of Z^2_G = 0.12 +- 0.04, the pseudoscalar mixing angle psi_P = (40.4 +- 0.6) degree and the phi-omega mixing angle psi_V = (3.32 +- 0.09) degree. Z^2_G and psi_P are fairly consistent with those previously published. We also evaluate the impact on the eta' gluonium content determination of future experimental improvements of the eta' branching ratios and decay width.Comment: 13 pages, 7 figures to submit to JHE
    corecore