11,057 research outputs found
Metal shearing energy absorber
A metal shearing energy absorber is described. The absorber is composed of a flat thin strip of metal which is pulled through a slot in a cutter member of a metal, harder than the metal of the strip. The slot's length, in the direction perpendicular to the pull direction, is less than the strip's width so that as the strip is pulled through the slot, its edges are sheared off, thereby absorbing some of the pulling energy. In one embodiment the cutter member is a flat plate of steel, while in another embodiment the cutter member is U-shaped with the slot at its base
Self heating and nonlinear current-voltage characteristics in bilayer graphene
We demonstrate by experiments and numerical simulations that the
low-temperature current-voltage characteristics in diffusive bilayer graphene
(BLG) exhibit a strong superlinearity at finite bias voltages. The
superlinearity is weakly dependent on doping and on the length of the graphene
sample. This effect can be understood as a result of Joule heating. It is
stronger in BLG than in monolayer graphene (MLG), since the conductivity of BLG
is more sensitive to temperature due to the higher density of electronic states
at the Dirac point.Comment: 9 pages, 7 figures, REVTeX 4.
Effect of spin orbit scattering on the magnetic and superconducting properties of nearly ferromagnetic metals: application to granular Pt
We calculate the effect of scattering on the static, exchange enhanced, spin
susceptibility and show that in particular spin orbit scattering leads to a
reduction of the giant moments and spin glass freezing temperature due to
dilute magnetic impurities. The harmful spin fluctuation contribution to the
intra-grain pairing interaction is strongly reduced opening the way for BCS
superconductivity. We are thus able to explain the superconducting and magnetic
properties recently observed in granular Pt as due to scattering effects in
single small grains.Comment: 9 pages 3 figures, accepted for publication in Phys. Rev. Letter
Decoherence processes in a current biased dc SQUID
A current bias dc SQUID behaves as an anharmonic quantum oscillator
controlled by a bias current and an applied magnetic flux. We consider here its
two level limit consisting of the two lower energy states | 0 \right> and |
1 \right>. We have measured energy relaxation times and microwave absorption
for different bias currents and fluxes in the low microwave power limit.
Decoherence times are extracted. The low frequency flux and current noise have
been measured independently by analyzing the probability of current switching
from the superconducting to the finite voltage state, as a function of applied
flux. The high frequency part of the current noise is derived from the
electromagnetic environment of the circuit. The decoherence of this quantum
circuit can be fully accounted by these current and flux noise sources.Comment: 4 pages, 4 figure
An accurate formula for the period of a simple pendulum oscillating beyond the small-angle regime
A simple approximation formula is derived here for the dependence of the
period of a simple pendulum on amplitude that only requires a pocket calculator
and furnishes an error of less than 0.25% with respect to the exact period. It
is shown that this formula describes the increase of the pendulum period with
amplitude better than other simple formulas found in literature. A good
agreement with experimental data for a low air-resistance pendulum is also
verified and it suggests, together with the current availability/precision of
timers and detectors, that the proposed formula is useful for extending the
pendulum experiment beyond the usual small-angle oscillations.Comment: 15 pages and 4 figures. to appear in American Journal of Physic
Energy relaxation in graphene and its measurement with supercurrent
We study inelastic energy relaxation in graphene for low energies to find out
how electrons scatter with acoustic phonons and other electrons. By coupling
the graphene to superconductors, we create a strong dependence of the measured
signal, i.e.,\ critical Josephson current, on the electron population on
different energy states. Since the relative population of high- and low-energy
states is determined by the inelastic scattering processes, the critical
current becomes an effective probe for their strength. We argue that the
electron-electron interaction is the dominant relaxation method and, in our
model of two-dimensional electron-electron scattering, we find a scattering
time ps at T=500 mK, 1-2 orders of magnitude smaller than
predicted by theory.Comment: 10 pages, 13 figures submitted to Physical Review
Bianchi type IX asymptotical behaviours with a massive scalar field: chaos strikes back
We use numerical integrations to study the asymptotical behaviour of a
homogeneous but anisotropic Bianchi type IX model in General Relativity with a
massive scalar field. As it is well known, for a Brans-Dicke theory, the
asymptotical behaviour of the metric functions is ruled only by the Brans-Dicke
coupling constant with respect to the value -3/2. In this paper we examine if
such a condition still exists with a massive scalar field. We also show that,
contrary to what occurs for a massless scalar field, the singularity
oscillatory approach may exist in presence of a massive scalar field having a
positive energy density.Comment: 31 pages, 7 figures (low resolution
Metal-shearing energy absorber
Device, consisting of tongue of thin aluminum alloy strip, pull tab, slotted steel plate which serves as cutter, and steel buckle, absorbs mechanical energy when its ends are subjected to tensile loading. Device is applicable as auxiliary shock absorbing anchor for automobile and airplane safety belts
Shot noise and conductivity at high bias in bilayer graphene: Signatures of electron-optical phonon coupling
We have studied electronic conductivity and shot noise of bilayer graphene
(BLG) sheets at high bias voltages and low bath temperature K. As a
function of bias, we find initially an increase of the differential
conductivity, which we attribute to self-heating. At higher bias, the
conductivity saturates and even decreases due to backscattering from optical
phonons. The electron-phonon interactions are also responsible for the decay of
the Fano factor at bias voltages V. The high bias electronic
temperature has been calculated from shot noise measurements, and it goes up to
K at V. Using the theoretical temperature dependence of BLG
conductivity, we extract an effective electron-optical phonon scattering time
. In a 230 nm long BLG sample of mobility
cmVs, we find that decreases with increasing
voltage and is close to the charged impurity scattering time fs
at V.Comment: 7 pages, 7 figures. Extended version of the high bias part of version
1. The low bias part is discussed in arXiv:1102.065
Biodiversity and Ecosystem Health of the Aldabra Group, Southern Seychelles: Scientific Report to the Government of Seychelles.
National Geographic's Pristine Seas project, in collaboration with the government of the Seychelles, the Island Conservation Society (ICS), the Seychelles Islands Foundation (SIF), and the Waitt Foundation, conducted an expedition to explore the poorly known marine environment around these islands. The goals were to assess the biodiversity of the nearshore marine environment and to survey the largely unknown deep sea realm. The data collected contribute to the marine spatial planning of the Seychelles, in particular the creation of large marine reserves
- …