7,629 research outputs found

    Focussing quantum states

    Get PDF
    Does the size of atoms present a lower limit to the size of electronic structures that can be fabricated in solids? This limit can be overcome by using devices that exploit quantum mechanical scattering of electron waves at atoms arranged in focussing geometries on selected surfaces. Calculations reveal that features smaller than a hydrogen atom can be obtained. These structures are potentially useful for device applications and offer a route to the fabrication of ultrafine and well defined tips for scanning tunneling microscopy.Comment: 4 pages, 4 figure

    Simple strong glass forming models: mean-field solution with activation

    Full text link
    We introduce simple models, inspired by previous models for froths and covalent glasses, with trivial equilibrium properties but dynamical behaviour characteristic of strong glass forming systems. These models are also a generalization of backgammon or urn models to a non--constant number of particles, where entropic barriers are replaced by energy barriers, allowing for the existence of activated processes. We formulate a mean--field version of the models, which keeps most of the features of the finite dimensional ones, and solve analytically the out--of--equilibrium dynamics in the low temperature regime where activation plays an essential role.Comment: 18 pages, 9 figure

    Glassy behaviour in a simple topological model

    Full text link
    In this article we study a simple, purely topological, cellular model which is allowed to evolve through a Glauber-Kawasaki process. We find a non-thermodynamic transition to a glassy phase in which the energy (defined as the square of the local cell topological charge) fails to reach the equilibrium value below a characteristic temperature which is dependent on the cooling rate. We investigate a correlation function which exhibits aging behaviour, and follows a master curve in the stationary regime when time is rescaled by a factor of the relaxation time t_r. This master curve can be fitted by a von Schweidler law in the late beta-relaxation regime. The relaxation times can be well-fitted at all temperatures by an offset Arrhenius law. A power law can be fitted to an intermediate temperature regime; the exponent of the power law and the von Schweidler law roughly agree with the relationship predicted by Mode-coupling Theory. By defining a suitable response function, we find that the fluctuation-dissipation ratio is held until sometime later than the appearance of the plateaux; non-monotonicity of the response is observed after this ratio is broken, a feature which has been observed in other models with dynamics involving activated processes.Comment: 11 pages LaTeX; minor textual corrcetions, minor corrections to figs 4 & 7

    Probability Models for Degree Distributions of Protein Interaction Networks

    Full text link
    The degree distribution of many biological and technological networks has been described as a power-law distribution. While the degree distribution does not capture all aspects of a network, it has often been suggested that its functional form contains important clues as to underlying evolutionary processes that have shaped the network. Generally, the functional form for the degree distribution has been determined in an ad-hoc fashion, with clear power-law like behaviour often only extending over a limited range of connectivities. Here we apply formal model selection techniques to decide which probability distribution best describes the degree distributions of protein interaction networks. Contrary to previous studies this well defined approach suggests that the degree distribution of many molecular networks is often better described by distributions other than the popular power-law distribution. This, in turn, suggests that simple, if elegant, models may not necessarily help in the quantitative understanding of complex biological processes.

    Reliable estimation of prediction uncertainty for physico-chemical property models

    Full text link
    The predictions of parameteric property models and their uncertainties are sensitive to systematic errors such as inconsistent reference data, parametric model assumptions, or inadequate computational methods. Here, we discuss the calibration of property models in the light of bootstrapping, a sampling method akin to Bayesian inference that can be employed for identifying systematic errors and for reliable estimation of the prediction uncertainty. We apply bootstrapping to assess a linear property model linking the 57Fe Moessbauer isomer shift to the contact electron density at the iron nucleus for a diverse set of 44 molecular iron compounds. The contact electron density is calculated with twelve density functionals across Jacob's ladder (PWLDA, BP86, BLYP, PW91, PBE, M06-L, TPSS, B3LYP, B3PW91, PBE0, M06, TPSSh). We provide systematic-error diagnostics and reliable, locally resolved uncertainties for isomer-shift predictions. Pure and hybrid density functionals yield average prediction uncertainties of 0.06-0.08 mm/s and 0.04-0.05 mm/s, respectively, the latter being close to the average experimental uncertainty of 0.02 mm/s. Furthermore, we show that both model parameters and prediction uncertainty depend significantly on the composition and number of reference data points. Accordingly, we suggest that rankings of density functionals based on performance measures (e.g., the coefficient of correlation, r2, or the root-mean-square error, RMSE) should not be inferred from a single data set. This study presents the first statistically rigorous calibration analysis for theoretical Moessbauer spectroscopy, which is of general applicability for physico-chemical property models and not restricted to isomer-shift predictions. We provide the statistically meaningful reference data set MIS39 and a new calibration of the isomer shift based on the PBE0 functional.Comment: 49 pages, 9 figures, 7 table

    Glassy behaviour in an exactly solved spin system with a ferromagnetic transition

    Full text link
    We show that applying simple dynamical rules to Baxter's eight-vertex model leads to a system which resembles a glass-forming liquid. There are analogies with liquid, supercooled liquid, glassy and crystalline states. The disordered phases exhibit strong dynamical heterogeneity at low temperatures, which may be described in terms of an emergent mobility field. Their dynamics are well-described by a simple model with trivial thermodynamics, but an emergent kinetic constraint. We show that the (second order) thermodynamic transition to the ordered phase may be interpreted in terms of confinement of the excitations in the mobility field. We also describe the aging of disordered states towards the ordered phase, in terms of simple rate equations.Comment: 11 page

    Color Dynamics in External Fields

    Full text link
    We investigate the vacuum dynamics of U(1), SU(2), and SU(3) lattice gauge theories in presence of external (chromo)magnetic fields, both in (3+1) and (2+1) dimensions. We find that the critical coupling for the phase transition in compact U(1) gauge theory is independent of the strength of an external magnetic field. On the other hand we find that, both in (3+1) and (2+1) dimensions, the deconfinement temperature for SU(2) and SU(3) gauge systems in a constant abelian chromomagnetic field decreases when the strength of the applied field increases. We conclude that the dependence of the deconfinement temperature on the strength of an external constant chromomagnetic field is a peculiar feature of non abelian gauge theories and could be useful to get insight into color confinement.Comment: 26 pages, 14 figure

    Facilitating uptake of Aboriginal Adult Health Checks through community engagement and health promotion

    Get PDF
    Background: Adult Health Checks (AHCs) for Aboriginal and Torres Strait Islander people (MBS Item 710) promote comprehensive physical and psychosocial health assessments. Despite the poor uptake of health assessments in Aboriginal and Torres Strait Islander people, a small number of successful implementation initiatives have been reported. In order to ensure uptake of these screening initiatives, there remains a need to demonstrate the feasibility of models of implementing AHCs. Aims: The aim of this paper is to address the process issues and overarching outcomes of a two-day targeted screening and assessment programme to increase the uptake of AHCs at an Aboriginal Community Controlled Medical Service. Method: Clients of an urban Aboriginal Medical Service (AMS) were invited to undertake an AHC during a two-day screening initiative. On-site general practitioners (GPs), nurses, and Aboriginal Health Workers (AHWs) worked within a team to facilitate screenings at an AMS. Barriers and facilitators to the initiative and strategies for quality improvement were discussed by the team. A review of medical notes was undertaken six months following the screening days to document uptake of recommendations.Results: Forty clients undertook AHCs as part of the initiative. In total, 113 diagnostic tests, interventions, specialist referrals and medication initiatives had been enacted within the following six months as a result of screening day visits. Benefits to individual clients, the community, the AMS and staff were identified. Conclusions: The screening day demonstrated feasibility and acceptability of this approach and provides support for its implementation in other health facilities. Importantly, this service was provided in a culturally sensitive framework and within an interdisciplinary teamwork model. This targeted approach increased uptake of assessment items and provided opportunities for health advice and risk factor modification
    corecore