412 research outputs found

    Elaborations on the String Dual to N=1 SQCD

    Full text link
    In this paper we make further refinements to the duality proposed between N=1 SQCD and certain string (supergravity plus branes) backgrounds, working in the regime of comparable large number of colors and flavors. Using the string theory solutions, we predict different field theory observables and phenomena like Seiberg duality, gauge coupling and its running, the behavior of Wilson and 't Hooft loops, anomalous dimensions of the quark superfields, quartic superpotential coupling and its running, continuous and discrete anomaly matching. We also give evidence for the smooth interpolation between higgsed and confining vacua. We provide several matchings between field theory and string theory computations.Comment: 44 pages, 6 figures. References added, minor rewritings, published versio

    N=1 SQCD-like theories with N_f massive flavors from AdS/CFT and beta functions

    Get PDF
    We study new supergravity solutions related to large-NcN_c N=1{\cal N}=1 supersymmetric gauge field theories with a large number NfN_f of massive flavors. We use a recently proposed framework based on configurations with NcN_c color D5 branes and a distribution of NfN_f flavor D5 branes, governed by a function NfS(r)N_f S(r). Although the system admits many solutions, under plausible physical assumptions the relevant solution is uniquely determined for each value of xNf/Ncx\equiv N_f/N_c. In the IR region, the solution smoothly approaches the deformed Maldacena-N\'u\~nez solution. In the UV region it approaches a linear dilaton solution. For x<2x<2 the gauge coupling βg\beta_g function computed holographically is negative definite, in the UV approaching the NSVZ β\beta function with anomalous dimension γ0=1/2\gamma_0= -1/2 (approaching 3/(32π2)(2NcNf)g3-3/(32\pi^2)(2N_c-N_f)g^3)), and with βg\beta_g \to-\infty in the IR. For x=2x=2, βg\beta_g has a UV fixed point at strong coupling, suggesting the existence of an IR fixed point at a lower value of the coupling. We argue that the solutions with x>2x>2 describe a "Seiberg dual" picture where Nf2NcN_f-2N_c flips sign.Comment: 18 pages, 10 figure

    Baryon charge from embedding topology and a continuous meson spectrum in a new holographic gauge theory

    Full text link
    We study a new holographic gauge theory based on probe D4-branes in the background dual to D4-branes on a circle with antiperiodic boundary conditions for fermions. Field theory configurations with baryons correspond to smooth embeddings of the probe D4-branes with nontrivial winding around an S^4 in the geometry. As a consequence, physics of baryons and nuclei can be studied reliably in this model using the abelian Born-Infeld action. However, surprisingly, we find that the meson spectrum is not discrete. This is related to a curious result that the action governing small fluctuations of the gauge field on the probe brane is the five-dimensional Maxwell action in Minkowski space despite the non-trivial embedding of the probe brane in the curved background geometry.Comment: 24 pages, LaTeX, 10 figures, v4: previously ignored effects of coupling to RR-fields included, meson spectrum qualitatively changed, v5: journal versio

    New families of interpolating type IIB backgrounds

    Get PDF
    We construct new families of interpolating two-parameter solutions of type IIB supergravity. These correspond to D3-D5 systems on non-compact six-dimensional manifolds which are T^2 fibrations over Eguchi-Hanson and multi-center Taub-NUT spaces, respectively. One end of the interpolation corresponds to a solution with only D5 branes and vanishing NS three-form flux. A topology changing transition occurs at the other end, where the internal space becomes a direct product of the four-dimensional surface and the two-torus and the complexified NS-RR three-form flux becomes imaginary self-dual. Depending on the choice of the connections on the torus fibre, the interpolating family has either N=2 or N=1 supersymmetry. In the N=2 case it can be shown that the solutions are regular.Comment: 20 page

    D3-D7 Quark-Gluon Plasmas at Finite Baryon Density

    Get PDF
    We present the string dual to SU(Nc) N=4 SYM, coupled to Nf massless fundamental flavors, at finite temperature and baryon density. The solution is determined by two dimensionless parameters, both depending on the 't Hooft coupling λh\lambda_h at the scale set by the temperature T: ϵhλhNf/Nc\epsilon_h\sim\lambda_h Nf/Nc, weighting the backreaction of the flavor fields and δ~λh1/2nb/(NfT3)\tilde\delta\sim\lambda_h^{-1/2}nb/(Nf T^3), where nbnb is the baryon density. For small values of these two parameters the solution is given analytically up to second order. We study the thermodynamics of the system in the canonical and grand-canonical ensembles. We then analyze the energy loss of partons moving through the plasma, computing the jet quenching parameter and studying its dependence on the baryon density. Finally, we analyze certain "optical" properties of the plasma. The whole setup is generalized to non abelian strongly coupled plasmas engineered on D3-D7 systems with D3-branes placed at the tip of a generic singular Calabi-Yau cone. In all the cases, fundamental matter fields are introduced by means of homogeneously smeared D7-branes and the flavor symmetry group is thus a product of abelian factors.Comment: 27 pages; v2: 29 pages, 1 (new) figure, new section 4.4 on optical properties, references, comments added; v3: eq. (3.19), comments and a reference adde

    Phases of N=1 USp(2N_c) Gauge Theories with Flavors

    Full text link
    We studied the phase structures of N=1 supersymmetric USp(2N_c) gauge theory with N_f flavors in the fundamental representation as we deformed the N=2 supersymmetric QCD by adding the superpotential for adjoint chiral scalar field. We determined the most general factorization curves for various breaking patterns, for example, the two different breaking patterns of quartic superpotential. We observed all kinds of smooth transitions for quartic superpotential. Finally we discuss the intriguing role of USp(0) in the phase structure and the possible connection with observations made recently in hep-th/0304271 (Aganagic, Intriligator, Vafa and Warner) and in hep-th/0307063 (Cachazo).Comment: 61pp; Improved the presentation, references are added and to appear in PR

    Holographic two dimensional QCD and Chern-Simons term

    Full text link
    We present a holographic realization of large Nc massless QCD in two dimensions using a D2/D8 brane construction. The flavor axial anomaly is dual to a three dimensional Chern-Simons term which turns out to be of leading order, and it affects the meson spectrum and holographic renormalization in crucial ways. The massless flavor bosons that exist in the spectrum are found to decouple from the heavier mesons, in agreement with the general lore of non-Abelian bosonization. We also show that an external dynamical photon acquires a mass through the three dimensional Chern-Simons term as expected from the Schwinger mechanism. Massless two dimensional QCD at large Nc exhibits anti-vector-meson dominance due to the axial anomaly.Comment: 22 page

    Intersecting D4-branes Model of Holographic QCD and Tachyon Condensation

    Full text link
    We consider the intersecting D4-brane and anti-D4-brane model of holographic QCD, motivated by the model that has recently been suggested by Van Raamsdonk and Whyte. We analyze such D4-branes by the use of the action with a bi-fundamental ``tachyon'' field, so that we find the classical solutions describing the intersecting D4-branes and the U-shaped D4-branes. We show that the ``tachyon'' field in the bulk theory provides a current quark mass and a quark condensate to the dual gauge theory and that the lowest modes of mesons obtain mass via tachyon condensation. Then evaluating the properties of a pion, one can reproduce Gell-Mann-Oakes-Renner relation.Comment: 24 pages, 5 figures; v2: refs. added; v3: discussions on Chern-Simons terms are adde

    Phases and geometry of the N=1 A_2 quiver gauge theory and matrix models

    Full text link
    We study the phases and geometry of the N=1 A_2 quiver gauge theory using matrix models and a generalized Konishi anomaly. We consider the theory both in the Coulomb and Higgs phases. Solving the anomaly equations, we find that a meromorphic one-form sigma(z)dz is naturally defined on the curve Sigma associated to the theory. Using the Dijkgraaf-Vafa conjecture, we evaluate the effective low-energy superpotential and demonstrate that its equations of motion can be translated into a geometric property of Sigma: sigma(z)dz has integer periods around all compact cycles. This ensures that there exists on Sigma a meromorphic function whose logarithm sigma(z)dz is the differential. We argue that the surface determined by this function is the N=2 Seiberg-Witten curve of the theory.Comment: 41 pages, 2 figures, JHEP style. v2: references adde
    corecore