13 research outputs found

    Anomalous Hall effect in the Co-based Heusler compounds Co2_{2}FeSi and Co2_{2}FeAl

    Full text link
    The anomalous Hall effect (AHE) in the Heusler compounds Co2_{2}FeSi and Co2_{2}FeAl is studied in dependence of the annealing temperature to achieve a general comprehension of its origin. We have demonstrated that the crystal quality affected by annealing processes is a significant control parameter to tune the electrical resistivity ρxx\rho_{xx} as well as the anomalous Hall resistivity ρahe\rho_{ahe}. Analyzing the scaling behavior of ρahe\rho_{ahe} in terms of ρxx\rho_{xx} points to a temperature-dependent skew scattering as the dominant mechanism in both Heusler compounds

    Local charge and spin currents in magnetothermal landscapes

    Full text link
    A scannable laser beam is used to generate local thermal gradients in metallic (Co2FeAl) or insulating (Y3Fe5O12) ferromagnetic thin films. We study the resulting local charge and spin currents that arise due to the anomalous Nernst effect (ANE) and the spin Seebeck effect (SSE), respectively. In the local ANE experiments, we detect the voltage in the Co2FeAl thin film plane as a function of the laser spot position and external magnetic field magnitude and orientation. The local SSE effect is detected in a similar fashion by exploiting the inverse spin Hall effect in a Pt layer deposited on top of the Y3Fe5O12. Our findings establish local thermal spin and charge current generation as well as spin caloritronic domain imaging

    Anomalous Hall effect in perpendicularly magnetized Mn3-xGa thin films

    No full text
    Glas M, Ebke D, Imort I-M, Thomas P, Reiss G. Anomalous Hall effect in perpendicularly magnetized Mn3-xGa thin films. Journal Of Magnetism And Magnetic Materials. 2013;333:134-137.Mn3-xGa (x=0.1, 0.4, 0.7) thin films on MgO and SrTiO3 substrates were investigated with magnetic anisotropy perpendicular to the film plane. An anomalous Hall effect was observed for the tetragonal distorted lattice in the crystallographic D0(22) phase. The Hall resistivity Q(xy) was measured in a temperature range from 20 to 330 K. The determined skew scattering and side jump coefficients are discussed with regard to the film composition and used substrate and compared to the crystallographic and magnetic properties. (C) 2012 Elsevier By. All rights reserved

    Structural Insights into the Mechanism of pH-dependent Ligand Binding and Release by the Cation-dependent Mannose 6-Phosphate Receptor*S⃞

    No full text
    The cation-dependent mannose 6-phosphate receptor (CD-MPR) is a key component of the lysosomal enzyme targeting system that binds newly synthesized mannose 6-phosphate (Man-6-P)-containing acid hydrolases and transports them to endosomal compartments. The interaction between the MPRs and its ligands is pH-dependent; the homodimeric CD-MPR binds lysosomal enzymes optimally in the pH environment of the trans Golgi network (pH ∼ 6.5) and releases its cargo in acidic endosomal compartments (<pH 5.5) and at the cell surface. In addition, CD-MPR binding affinities are modulated by divalent cations. Our previous crystallographic studies have shown that at pH 6.5, the CD-MPR bound to Man-6-P adopts a significantly different quaternary conformation than the CD-MPR in a ligand-unbound state, a feature unique among known lectin structures. To determine whether different pH conditions elicit conformational changes in the receptor that alters ligand binding affinities, we have obtained additional crystal structures representative of the various environments encountered by the receptor including: 1) the CD-MPR bound at pH 6.5 (i.e. trans Golgi network) to a high affinity ligand (the terminally phosphorylated trisaccharide P-Man(α1,2)Man(α1,2)Man-O-(CH2)8COOMe), 2) the CD-MPR at pH 4.8 in an unbound state (i.e. endosome), and 3) the CD-MPR at pH 7.4 (i.e. cell surface). A detailed comparison of the available CD-MPR structures reveals the positional invariability of specific binding pocket residues and implicates intermonomer contact(s), as well as the protonation state of Man-6-P, as regulators of pH-dependent carbohydrate binding
    corecore