859 research outputs found

    Ferromagnetic imprinting of spin polarization in a semiconductor

    Full text link
    We present a theory of the imprinting of the electron spin coherence and population in an n-doped semiconductor which forms a junction with a ferromagnet. The reflection of non-equilibrium semiconductor electrons at the interface provides a mechanism to manipulate the spin polarization vector. In the case of unpolarized excitation, this ballistic effect produces spontaneous electron spin coherence and nuclear polarization in the semiconductor, as recently observed by time-resolved Faraday rotation experiments. We investigate the dependence of the spin reflection on the Schottky barrier height and the doping concentration in the semiconductor and suggest control mechanisms for possible device applications.Comment: 4 pages with 2 figure

    Density-relaxation part of the self energy

    Get PDF
    A comment is made on the large-cluster limit of the self-energy correction for the quasiparticle energy gap in silicon clusters presented by Serdar Ogut, James R. Chelikowsky and Steven G. Louie in Phys. Rev. Lett. 79, 1770 (1997)

    Collective oscillations driven by correlation in the nonlinear optical regime

    Full text link
    We present an analytical and numerical study of the coherent exciton polarization including exciton-exciton correlation. The time evolution after excitation with ultrashort optical pulses can be divided into a slowly varying polarization component and novel ultrafast collective modes. The frequency and damping of the collective modes are determined by the high-frequency properties of the retarded two-exciton correlation function, which includes Coulomb effects beyond the mean-field approximation. The overall time evolution depends on the low-frequency spectral behavior. The collective mode, well separated from the slower coherent density evolution, manifests itself in the coherent emission of a resonantly excited excitonic system, as demonstrated numerically.Comment: 4 pages, 4 figures, accepted for publication in Physical Review Letter

    Spin relaxation in low-dimensional systems

    Full text link
    We review some of the newest findings on the spin dynamics of carriers and excitons in GaAs/GaAlAs quantum wells. In intrinsic wells, where the optical properties are dominated by excitonic effects, we show that exciton-exciton interaction produces a breaking of the spin degeneracy in two-dimensional semiconductors. In doped wells, the two spin components of an optically created two-dimensional electron gas are well described by Fermi-Dirac distributions with a common temperature but different chemical potentials. The rate of the spin depolarization of the electron gas is found to be independent of the mean electron kinetic energy but accelerated by thermal spreading of the carriers.Comment: 1 PDF file, 13 eps figures, Proceedings of the 1998 International Workshop on Nanophysics and Electronics (NPE-98)- Lecce (Italy

    Optimized Effective Potential for Extended Hubbard Model

    Full text link
    Antiferromagnetic and charge ordered Hartree-Fock solutions of the one-band Hubbard model with on-site and nearest-neighbor Coulomb repulsions are exactly mapped onto an auxiliary local Kohn-Sham (KS) problem within a density-functional theory. The mapping provides a new insight into the interpretation of the KS equations. (i) With an appropriate choice of the basic variable, there is a universal form of the KS potential, which is applicable both for the antiferromagnetic and the charge ordered solutions. (ii) The Kohn-Sham and Hartree-Fock eigenvalues are interconnected by a scaling transformation. (iii) The band-gap problem is attributed to the derivative discontinuity of the basic variable as the function of the electron number, rather than a finite discontinuity of the KS potential. (iv) It is argued that the conductivity gap and the energies of spin-wave excitations can be entirely defined by the parameters of the ground state and the KS eigenvalues.Comment: 21 page, 3 figure

    CaB_6: a new semiconducting material for spin electronics

    Full text link
    Ferromagnetism was recently observed at unexpectedly high temperatures in La-doped CaB_6. The starting point of all theoretical proposals to explain this observation is a semimetallic electronic structure calculated for CaB_6 within the local density approximation. Here we report the results of parameter-free quasiparticle calculations of the single-particle excitation spectrum which show that CaB_6 is not a semimetal but a semiconductor with a band gap of 0.8 eV. Magnetism in La_xCa_{1-x}B_6 occurs just on the metallic side of a Mott transition in the La-induced impurity band.Comment: 4 pages, 1 postscript figur

    Efficient total energy calculations from self-energy models

    Get PDF
    We propose a new method for calculating total energies of systems of interacting electrons, which requires little more computational resources than standard density-functional theories. The total energy is calculated within the framework of many-body perturbation theory by using an efficient model of the self-energy, that nevertheless retains the main features of the exact operator. The method shows promising performance when tested against quantum Monte Carlo results for the linear response of the homogeneous electron gas and structural properties of bulk silicon

    Coulombian Disorder in Periodic Systems

    Full text link
    We study the effect of unscreened charged impurities on periodic systems. We show that the long wavelength component of the disorder becomes long ranged and dominates static correlation functions. On the other hand, because of the statistical tilt symmetry, dynamical properties such as pinning remain unaffected. As a concrete example, we focus on the effect of Coulombian disorder generated by charged impurities, on 3D charge density waves with non local elasticity. We calculate the x-ray intensity and find that it is identical to the one produced by thermal fluctuations in a disorder-free smectic-A. We discuss the consequences of these results for experiments.Comment: 11 pages, 3 figures, revtex

    Exact exchange-correlation potential of a ionic Hubbard model with a free surface

    Full text link
    We use Lanczos exact diagonalization to compute the exact exchange-correlation (xc) potential of a Hubbard chain with large binding energy ("the bulk") followed by a chain with zero binding energy ("the vacuum"). Several results of density functional theory in the continuum (sometimes controversial) are verified in the lattice. In particular we show explicitly that the fundamental gap is given by the gap in the Kohn-Sham spectrum plus a contribution due to the jump of the xc-potential when a particle is added. The presence of a staggered potential and a nearest-neighbor interaction V allows to simulate a ionic solid. We show that in the ionic regime in the small hopping amplitude limit the xc-contribution to the gap equals V, while in the Mott regime it is determined by the Hubbard U interaction. In addition we show that correlations generates a new potential barrier at the surface

    The Effective Particle-Hole Interaction and the Optical Response of Simple Metal Clusters

    Full text link
    Following Sham and Rice [L. J. Sham, T. M. Rice, Phys. Rev. 144 (1966) 708] the correlated motion of particle-hole pairs is studied, starting from the general two-particle Greens function. In this way we derive a matrix equation for eigenvalues and wave functions, respectively, of the general type of collective excitation of a N-particle system. The interplay between excitons and plasmons is fully described by this new set of equations. As a by-product we obtain - at least a-posteriori - a justification for the use of the TDLDA for simple-metal clusters.Comment: RevTeX, 15 pages, 5 figures in uufiles format, 1 figure avaible from [email protected]
    • …
    corecore