283 research outputs found
Recommended from our members
Automated verification of refinement laws
Demonic refinement algebras are variants of Kleene algebras. Introduced by von Wright as a light-weight variant of the refinement calculus, their intended semantics are positively disjunctive predicate transformers, and their calculus is entirely within first-order equational logic. So, for the first time, off-the-shelf automated theorem proving (ATP) becomes available for refinement proofs. We used ATP to verify a toolkit of basic refinement laws. Based on this toolkit, we then verified two classical complex refinement laws for action systems by ATP: a data refinement law and Back's atomicity refinement law. We also present a refinement law for infinite loops that has been discovered through automated analysis. Our proof experiments not only demonstrate that refinement can effectively be automated, they also compare eleven different ATP systems and suggest that program verification with variants of Kleene algebras yields interesting theorem proving benchmarks. Finally, we apply hypothesis learning techniques that seem indispensable for automating more complex proofs
The structure of molecular clumps around high-mass young stellar objects
We have used the IRAM 30-m and FCRAO 14-m telescopes to observe the molecular
clumps associated with 12 ultracompact (UC) HII regions in the J=6-5, 8-7 and
13-12 rotational transitions of methyl-acetylene (CH3C2H). Under the assumption
of LTE and optically thin emission, we have derived temperature estimates
ranging from 30 to 56 K. We estimate that the clumps have diameters of 0.2-1.6
pc, H_2 densities of 10^5-10^6 {cm^{-3}}, and masses of 10^2-2 10^4 M_\odot. We
compare these values with those obtained by other authors from different
molecular tracers and find that the H_2 density and the temperature inside the
clumps vary respectively like n_{H_2} ~ R^{-2.6} and T ~ R^{-0.5}, with R
distance from the centre. We also find that the virial masses of the clumps are
~3 times less than those derived from the CH3C2H column densities: we show that
a plausible explanation is that magnetic fields play an important role to
stabilise the clumps, which are on the verge of gravitational collapse.
Finally, we show that the CH3C2H line width increases for decreasing distance
from the clump centre: this effect is consistent with infall in the inner
regions of the clumps. We conclude that the clumps around UC HII regions are
likely to be transient (~10^(5) yr) entities, remnants of isothermal spheres
currently undergoing gravitational collapse: the high mass accretion rates
(~10^{-2} M_\odot yr^{-1}) lead to massive star formation at the centre of such
clumps.Comment: 15 pages, 11 figures, A & A in pres
Carbon recombination lines in the Orion Bar
We have carried out VLA D-array observations of the C91alpha carbon
recombination line as well as Effelsberg 100-m observations of the C65alpha
line in a 5 arcmin square region centered between the Bar and the Trapezium
stars in the Orion Nebula with spatial resolutions of 10 arcsec and 40 arcsec,
respectively. The results show the ionized carbon in the PDR associated with
the Orion Bar to be in a thin, clumpy layer sandwiched between the ionization
front and the molecular gas. From the observed line widths we get an upper
limit on the temperature in the C+ layer of 1500 K and from the line intensity
a hydrogen density between 5 10^4 and 2.5 10^5 cm-3 for a homogeneous medium.
The observed carbon level population is not consistent with predictions of
hydrogenic recombination theory but could be explained by dielectronic
recombination. The layer of ionized carbon seen in C91alpha is found to be
essentially coincident with emission in the v=1-0 S(1) line of vibrationally
excited molecular hydrogen. This is surprising in the light of current PDR
models and some possible explanations of the discrepancy are discussed.Comment: 9 pages, 3 Postscript figures, uses aaspp4 and psfig, To Appear in
ApJ Letters (accepted Jul. 24, 1997
X-Ray Emission from Young Stars in the Massive Star Forming Region IRAS 20126+4104
We present a ks Chandra observation of the IRAS20126+4104 core
region. In the inner two X-ray sources were detected, which
are coincident with the radio jet source I20S and the variable radio source
I20Var. No X-ray emission was detected from the nearby massive protostar I20N.
The spectra of both detected sources are hard and highly absorbed, with no
emission below keV.
For I20S, the measured keV count rate was ctsks.
The X-ray spectrum was fit with an absorbed 1T APEC model with an energy of
kTkeV and an absorbing column of Ncm.
An unabsorbed X-ray luminosity of about ergs
was estimated. The spectrum shows broad line emission between 6.4 and 6.7\,
keV, indicative of emission from both neutral and highly ionized iron. The
X-ray lightcurve indicates that I20S is marginally variable; however, no flare
emission was observed.
The variable radio source I20Var was detected with a count rate of
ctsks but there was no evidence of X-ray variability. The
best fit spectral model is a 1T APEC model with an absorbing hydrogen column of
Ncm and a plasma energy of kT = 6.0keV.
The unabsorbed X-ray luminosity is about ergs.Comment: 17pages, 4 figures to appear in Astronomical Journa
High Resolution Observations of the Massive Protostar in IRAS18566+0408
We report 3 mm continuum, CH3CN(5-4) and 13CS(2-1) line observations with
CARMA, in conjunction with 6 and 1.3 cm continuum VLA data, and 12 and 25
micron broadband data from the Subaru Telescope toward the massive proto-star
IRAS18566+0408. The VLA data resolve the ionized jet into 4 components aligned
in the E-W direction. Radio components A, C, and D have flat cm SEDs indicative
of optically thin emission from ionized gas, and component B has a spectral
index alpha = 1.0, and a decreasing size with frequency proportional to
frequency to the -0.5 power. Emission from the CARMA 3 mm continuum, and from
the 13CS(2-1), and CH3CN(5-4) spectral lines is compact (i.e. < 6700 AU), and
peaks near the position of VLA cm source, component B. Analysis of these lines
indicates hot, and dense molecular gas, typical for HMCs. Our Subaru telescope
observations detect a single compact source, coincident with radio component B,
demonstrating that most of the energy in IRAS18566+0408 originates from a
region of size < 2400 AU. We also present UKIRT near-infrared archival data for
IRAS18566+0408 which show extended K-band emission along the jet direction. We
detect an E-W velocity shift of about 10 km/sec over the HMC in the CH3CN lines
possibly tracing the interface of the ionized jet with the surrounding core
gas. Our data demonstrate the presence of an ionized jet at the base of the
molecular outflow, and support the hypothesis that massive protostars with
O-type luminosity form with a mechanism similar to lower mass stars
Long-term Variability of HCO Masers in Star-forming Regions
We present results of a multi-epoch monitoring program on variability of
6cm formaldehyde (HCO) masers in the massive star forming region
NGC7538IRS1 from 2008 to 2015 conducted with the GBT, WSRT, and
VLA. We found that the similar variability behaviors of the two formaldehyde
maser velocity components in NGC7538IRS1 (which was pointed out by
Araya and collaborators in 2007) have continued. The possibility that the
variability is caused by changes in the maser amplification path in regions
with similar morphology and kinematics is discussed. We also observed
12.2GHz methanol and 22.2GHz water masers toward
NGC7538IRS1. The brightest maser components of CHOH and HO
species show a decrease in flux density as a function of time. The brightest
HCO maser component also shows a decrease in flux density and has a similar
LSR velocity to the brightest HO and 12.2GHz CHOH masers. The line
parameters of radio recombination lines and the 20.17 and 20.97GHz CHOH
transitions in NGC7538IRS1 are also reported. In addition, we
observed five other 6cm formaldehyde maser regions. We found no evidence of
significant variability of the 6cm masers in these regions with respect to
previous observations, the only possible exception being the maser in
G29.960.02. All six sources were also observed in the HCO
isotopologue transition of the 6cm HCO line; HCO absorption
was detected in five of the sources. Estimated column density ratios
[HCO]/[HCO] are reported.Comment: 29 pages, 9 figure
- …