728 research outputs found
Exploring gravity wave characteristics in 3-D using a novel S-transform technique: AIRS/Aqua measurements over the Southern Andes and Drake Passage
Gravity waves (GWs) transport momentum and energy in the atmosphere, exerting a profound influence on the global circulation. Accurately measuring them is thus vital both for understanding the atmosphere and for developing the next generation of weather forecasting and climate prediction models. However, it has proven very difficult to measure the full set of GW parameters from satellite measurements, which are the only suitable observations with global coverage. This is particularly critical at latitudes close to 60° S, where climate models significantly under-represent wave momentum fluxes. Here, we present a novel fully 3-D method for detecting and characterising GWs in the stratosphere. This method is based around a 3-D Stockwell transform, and can be applied retrospectively to existing observed data. This is the first scientific use of this spectral analysis technique. We apply our method to high-resolution 3-D atmospheric temperature data from AIRS/Aqua over the altitude range 20–60 km. Our method allows us to determine a wide range of parameters for each wave detected. These include amplitude, propagation direction, horizontal/vertical wavelength, height/direction-resolved momentum fluxes (MFs), and phase and group velocity vectors. The latter three have not previously been measured from an individual satellite instrument. We demonstrate this method over the region around the Southern Andes and Antarctic Peninsula, the largest known sources of GW MFs near the 60° S belt. Our analyses reveal the presence of strongly intermittent highly directionally focused GWs with very high momentum fluxes (∼ 80–100 mPa or more at 30 km altitude). These waves are closely associated with the mountains rather than the open ocean of the Drake Passage. Measured fluxes are directed orthogonal to both mountain ranges, consistent with an orographic source mechanism, and are largest in winter. Further, our measurements of wave group velocity vectors show clear observational evidence that these waves are strongly focused into the polar night wind jet, and thus may contribute significantly to the "missing momentum" at these latitudes. These results demonstrate the capabilities of our new method, which provides a powerful tool for delivering the observations required for the next generation of weather and climate models
Combining AIRS and MLS observations for three-dimensional gravity wave measurement
Gravity waves play a critical role in transporting energy and momentum between the troposphere, stratosphere, and mesosphere. Satellite measurements provide a powerful tool to investigate these waves across the globe. However, many present methods cannot yield reliable estimates of wave momentum fluxes or the directions of these fluxes. Here we present a new method which addresses this problem by combining observations from Atmospheric Infrared Sounder (AIRS) and Microwave Limb Sounder (MLS) in three dimensions. The method allows direct estimation of horizontal and vertical wavelengths as well as wave amplitude. This in turn allows estimation of both wave momentum flux and the full 3-D direction of propagation, crucially including the horizontal direction. The method thus allows separation of the data into, for example, eastward and westward momentum fluxes, allowing estimation of the net atmospheric forcing due to these waves. We illustrate this method with a proof-of-concept study over the Andes, arguably the largest source of gravity waves in the world. We further critically assess the advantages and disadvantages of our method. Our study highlights the importance of the difference between net and absolute measures of momentum flux
Meteor showers of comet C/1917 F1 Mellish
December Monocerotids and November Orionids are weak but established annual
meteor showers active throughout November and December. Analysis of a high
quality orbits subset of the SonotaCo video meteor database shows that the
distribution of orbital elements, geocentric velocity and also the orbital
evolution of the meteors and potential parent body may imply a common origin
for these meteors coming from the parent comet C/1917 F1 Mellish. This is also
confirmed by the physical properties and activity of these shower meteors. An
assumed release of meteoroids at the perihelion of the comet in the past and
the sky-plane radiant distribution reveal that the December Monocerotid stream
might be younger than the November Orionids. A meteoroid transversal component
of ejection velocity at the perihelion must be larger than 100 m/s. A few
authors have also associated December Canis Minorids with the comet C/1917 F1
Mellish. However, we did not find any connection.Comment: 11 pages, 11 figures and 5 table
The estimands framework: a primer on the ICH E9(R1) addendum
Estimands can be used in studies of healthcare interventions to clarify the interpretation of treatment effects. The addendum to the ICH E9 harmonised guideline on statistical principles for clinical trials (ICH E9(R1)) describes a framework for using estimands as part of a study. This paper provides an overview of the estimands framework, as outlined in the addendum, with the aim of explaining why estimands are beneficial; clarifying the terminology being used; and providing practical guidance on using estimands to decide the appropriate study design, data collection, and estimation methods. This article illustrates how to use the estimands framework by applying it to an ongoing trial in emergency bowel surgery. Estimands can be a useful way of clarifying the exact research question being evaluated in a study, both to avoid misinterpretation and to ensure that study methods are aligned to the overall study objectives
Measuring gravity wave parameters from a nighttime satellite low-light image based on two-dimensional stockwell transform
Atmospheric gravity waves are a kind of mesoscale disturbance, commonly found in the atmospheric system, that plays a key role in a series of mesospheric dynamic processes. When propagating to the upper atmosphere, the gravity waves will disturb the local temperature and density, and then modulate the intensity of the surrounding airglow radiation. As a result, the presence of gravity waves on a moonless night can usually cause the airglow to reveal ripple features in low-light images. In this paper we have applied a twodimensional Stockwell transform technique (2DST) to airglow measurements from nighttime low-light images of the day-night band on the Suomi National Polar-Orbiting Partnership. To our knowledge this study is the first to measure localized mesospheric gravity wave brightness amplitudes, horizontal wavelengths, and propagation directions using such a method and data. We find that the method can characterize the general shape and amplitude of concentric gravity wave patterns, capturing the dominant features and directions with a good degree of accuracy. The key strength of our 2DST application is that our approach could be tuned and then automated in the future to process tens of thousands of low-light images, globally characterizing gravity wave parameters in this historically poorly studied layer of the atmosphere.</p
How well do stratospheric reanalyses reproduce high-resolution satellite temperature measurements?
Atmospheric reanalyses are data-assimilating weather models
which are widely used as proxies for the true state of the atmosphere in the
recent past. This is particularly the case for the stratosphere, where
historical observations are sparse. But how realistic are these stratospheric
reanalyses? Here, we resample stratospheric temperature data from six modern
reanalyses (CFSR, ERA-5, ERA-Interim, JRA-55, JRA-55C and MERRA-2) to produce
synthetic satellite observations, which we directly compare to retrieved
satellite temperatures from COSMIC, HIRDLS and SABER and to brightness
temperatures from AIRS for the 10-year period of 2003–2012. We explicitly
sample standard public-release products in order to best assess their
suitability for typical usage. We find that all-time all-latitude
correlations between limb sounder observations and synthetic observations
from full-input reanalyses are 0.97–0.99 at 30 km in altitude, falling to
0.84–0.94 at 50 km. The highest correlations are seen at high latitudes and
the lowest in the sub-tropics, but root-mean-square (RMS) differences are
highest (10 K or greater) in high-latitude winter. At all latitudes,
differences increase with increasing height. High-altitude differences become
especially large during disrupted periods such as the post-sudden
stratospheric warming recovery phase, in which zonal-mean differences can be as
high as 18 K among different datasets. We further show that, for the
current generation of reanalysis products, a full-3-D sampling approach (i.e.
one which takes full account of the instrument measuring volume) is always
required to produce realistic synthetic AIRS observations, but is almost
never required to produce realistic synthetic HIRDLS observations. For
synthetic SABER and COSMIC observations full-3-D sampling is required in
equatorial regions and regions of high gravity-wave activity but not
otherwise. Finally, we use cluster analyses to show that full-input
reanalyses (those which assimilate the full suite of observations, i.e.
excluding JRA-55C) are more tightly correlated with each other than with
observations, even observations which they assimilate. This may suggest that
these reanalyses are over-tuned to match their comparators. If so, this could
have significant implications for future reanalysis development.</p
The rat retrosplenial cortex as a link for frontal functions: a lesion analysis
Cohorts of rats with excitotoxic retrosplenial cortex lesions were tested on four behavioural tasks sensitive to dysfunctions in prelimbic cortex, anterior cingulate cortex, or both. In this way the study tested whether retrosplenial cortex has nonspatial functions that reflect its anatomical interactions with these frontal cortical areas. In Experiment 1, retrosplenial cortex lesions had no apparent effect on a set-shifting digging task that taxed intradimensional and extradimensional attention, as well as reversal learning. Likewise, retrosplenial cortex lesions did not impair a strategy shift task in an automated chamber, which involved switching from visual-based to response-based discriminations and, again, included a reversal (Experiment 2). Indeed, there was evidence that the retrosplenial lesions aided the initial switch to response-based selection. No lesion deficit was found on an automated cost-benefit task that pitted size of reward against effort to achieve that reward (Experiment 3). Finally, while retrosplenial cortex lesions affected matching-to-place task in a T-maze, the profile of deficits differed from that associated with prelimbic cortex damage (Experiment 4). When the task was switched to a nonmatching design, retrosplenial cortex lesions had no apparent effect on performance. The results from the four experiments show that many frontal tasks do not require the retrosplenial cortex, highlighting the specificity of their functional interactions. The results show how retrosplenial cortex lesions spare those learning tasks in which there is no mismatch between the internal and external representations used to guide behavioural choice. In addition, these experiments further highlight the importance of the retrosplenial cortex in solving tasks with a spatial component
A novel role for the rat retrosplenial cortex in cognitive control
By virtue of its frontal and hippocampal connections, the retrosplenial cortex is uniquely placed to support cognition. Here, we tested whether the retrosplenial cortex is required for frontal tasks analogous to the Stroop Test, i.e., for the ability to select between conflicting responses and inhibit responding to task-irrelevant cues. Rats first acquired two instrumental conditional discriminations, one auditory and one visual, set in two distinct contexts. As a result, rats were rewarded for pressing either the right or left lever when a particular auditory or visual signal was present. In extinction, rats received compound stimuli that either comprised the auditory and visual elements that signaled the same lever response (congruent) or signaled different lever responses (incongruent) during training. On conflict (incongruent) trials, lever selection by sham-operated animals followed the stimulus element that had previously been trained in that same test context, whereas animals with retrosplenial cortex lesions failed to disambiguate the conflicting response cues. Subsequent experiments demonstrated that this abnormality on conflict trials was not due to a failure in distinguishing the contexts. Rather, these data reveal the selective involvement of the rat retrosplenial cortex in response conflict, and so extend the frontal system underlying cognitive control
Stratospheric Gravity Waves as a Proxy for Hurricane Intensification:A Case Study of Weather Research and Forecast Simulation for Hurricane Joaquin
We conducted simulations with a 4-km resolution for Hurricane Joaquin in 2015 using the weather research and forecast (WRF) model. The model data are used to study stratospheric gravity waves (GWs) generated by the hurricane and how they correlate with hurricane intensity. The simulation results show spiral GWs propagating upward and anticlockwise away from the hurricane center. GWs with vertical wavelengths up to 14 km are generated. We find that GW activity is more frequent and intense during hurricane intensification than during weakening, particularly for the most intense GW activity. There are significant correlations between the change of stratospheric GW intensity and hurricane intensity. Therefore, the emergence of intensive stratospheric GW activity may be considered a useful proxy for identifying hurricane intensification
Aeolus wind lidar observations of the 2019/2020 Quasi-Biennial Oscillation disruption with comparison to radiosondes and reanalysis
The quasi-biennial oscillation (QBO) was unexpectedly disrupted for only the second time in the historical record during the 2019/20 boreal winter. As the dominant mode of atmospheric variability in the tropical stratosphere, and a significant source of seasonal predictability globally, understanding the drivers behind this unusual behaviour is very important. Here, novel data from Aeolus, the first Doppler wind lidar in space, is used to observe the 2019/20 QBO disruption. Aeolus is the first satellite able to observe winds at high resolution on a global scale, and is therefore a uniquely capable platform for studying the evolution of the disruption and the broader circulation changes triggered by it. This study therefore contains the first direct wind observations of the QBO from space, and exploits measurements from a special Aeolus scanning mode, implemented to observe this disruption as it happened. Aeolus observes easterly winds of up to 20 ms−1 in the core of the disruption jet during July 2020. By co-locating with radiosonde measurements from Singapore and ERA5 reanalysis, like-for-like comparisons of the observed wind structures in the tropical stratosphere are produced, showing equatorial Kelvin wave activity and key parts of the Walker Circulation during the disruption period. The onset of the disruption easterly jet occurs 5 days earlier in Aeolus observations compared with the reanalysis. This analysis highlights how Aeolus and future Doppler wind lidar satellites can deepen our understanding of the QBO, its disruptions, and the tropical upper-troposphere lower-stratosphere region more generally.</p
- …