182 research outputs found

    Relation between cytokines and routine laboratory data in children with septic shock and purpura

    Get PDF
    Objective To establish the relation between routine laboratory data (lactate, fibrinogen, CRP) and cytokines (TNF,IL-1 and-6) and to estimate their prognostic value in pediatric patients with severe infectious purpura on admission. Design Prospective study. Setting Pediatric intensive care unit (PICU). Patients 17 children aged 5–172 months (median 46) were hospitalized in our PICU in 1989–90 with severe infectious purpura.Neisseria meningitidis was isolated in 15 children andHaemophilus influenzae in two. The patients were divided into 3 groups: non-shock, shock and severe shock leading to death. Shock was defined by standard criteria. Measurements Arterial blood was sampled for lactate, CRP, fibrinogen, TNF, and IL-1 and-6 on admission. The PRISM (pediatric risk of morality)-score was recorded. Methods Statistical analysis was performed with the Student'st-test using the logarithmic values of the cytokine concentration, and Spearman correlation analysis. Results According to the shock criteria, 9 patients were in shock of whom 4 did not survive. Significant differences existed between the 3 groups concerning lactate, TNF, and IL-6. Fibrinogen, CRP, IL-1, and PRISM-score discriminated only between survivors and non-survivors. A highly significant correlation existed between cytokines, the PRISM-score and lactate (TNF:r=0.69, IL-1:r=0.56, IL-6:r=0.65, PRISM:r=0.65). A significant inverse correlation existed between cytokines and CRP (TNF:r=−0.55, IL-1:r=−0.64, and IL-6:r=−0.56), and IL-6 and fibrinogen (r=−0.65). Conclusion These results show a significant correlation between cytokines and lactate, and lactate, TNF and IL-6 are closely associated with the severity of septic shock with purpura in children

    A Potent Lead Induces Apoptosis in Pancreatic Cancer Cells

    Get PDF
    Pancreatic cancer is considered a lethal and treatment-refractory disease. To obtain a potent anticancer drug, the cytotoxic effect of 2-(benzo[d]oxazol-3(2H)-ylmethyl)- 5-((cyclohexylamino)methyl)benzene-1,4-diol, dihydrochloride (NSC48693) on human pancreatic cancer cells CFPAC-1, MiaPaCa-2, and BxPC-3 was assessed in vitro. The proliferation of CFPAC-1, MiaPaCa-2, and BxPC-3 is inhibited with IC50 value of 12.9±0.2, 20.6±0.3, and 6.2±0.6 µM at 48 h, respectively. This discovery is followed with additional analysis to demonstrate that NSC48693 inhibition is due to induction of apoptosis, including Annexin V staining, chromatins staining, and colony forming assays. It is further revealed that NSC48693 induces the release of cytochrome c, reduces mitochondrial membrane potential, generates reactive oxygen species, and activates caspase. These results collectively indicate that NSC48693 mainly induces apoptosis of CFPAC-1, MiaPaCa-2, and BxPC-3 cells by the mitochondrial-mediated apoptotic pathway. Excitingly, the study highlights an encouraging inhibition effect that human embryonic kidney (HEK-293) and liver (HL-7702) cells are more resistant to the antigrowth effect of NSC48693 compared to the three cancer cell lines. From this perspective, NSC48693 should help to open up a new opportunity for the treatment of patients with pancreatic cancer

    Class I histone deacetylases 1, 2 and 3 are highly expressed in renal cell cancer

    Get PDF
    Background Enhanced activity of histone deacetylases (HDAC) is associated with more aggressive tumour behaviour and tumour progression in various solid tumours. The over-expression of these proteins and their known functions in malignant neoplasms has led to the development of HDAC inhibitors (HDI) as new anti-neoplastic drugs. However, little is known about HDAC expression in renal cell cancer. Methods We investigated the expression of HDAC 1, 2 and 3 in 106 renal cell carcinomas and corresponding normal renal tissue by immunohistochemistry on tissue micro arrays and correlated expression data with clinico-pathological parameters including patient survival. Results Almost 60% of renal cell carcinomas expressed the HDAC isoforms 1 and 2. In contrast, HDAC 3 was only detected in 13% of all renal tumours, with particular low expression rates in the clear cell subtype. HDAC 3 was significantly higher expressed in pT1/2 tumours in comparison to pT3/4 tumours. Expression of class I HDAC isoforms correlated with each other and with the proliferative activity of the tumours. We found no prognostic value of the expression of any of the HDAC isoforms in this tumour entity. Conclusion Class I HDAC isoforms 1 and 2 are highly expressed in renal cell cancer, while HDAC 3 shows low, histology dependent expression rates. These unexpected differences in the expression patterns suggests alternative regulatory mechanisms of class I HDACs in renal cell cancer and should be taken into account when trials with isoform selective HDI are being planned. Whether HDAC expression in renal cancers is predictive of responsiveness for HDI will have to be tested in further studies

    Aspirin induces cell death and caspase-dependent phosphatidylserine externalization in HT-29 human colon adenocarcinoma cells

    Get PDF
    The induction of cell death by aspirin was analysed in HT-29 colon carcinoma cells. Aspirin induced two hallmarks of apoptosis: nuclear chromatin condensation and increase in phosphatidylserine externalization. However, aspirin did not induce either oligonucleosomal fragmentation of DNA, decrease in DNA content or nuclear fragmentation. The effect of aspirin on Annexin V binding was inhibited by the caspase inhibitor Z-VAD.fmk, indicating the involvement of caspases in the apoptotic action of aspirin. However, aspirin did not induce proteolysis of PARP, suggesting that aspirin does not increase nuclear caspase 3-like activity in HT-29 cells. This finding may be related with the ‘atypical’ features of aspirin-induced apoptosis in HT-29 cells. © 1999 Cancer Research Campaig

    Histone deacetylase inhibition results in a common metabolic profile associated with HT29 differentiation

    Get PDF
    Cell differentiation is an orderly process that begins with modifications in gene expression. This process is regulated by the acetylation state of histones. Removal of the acetyl groups of histones by specific enzymes (histone deacetylases, HDAC) usually downregulates expression of genes that can cause cells to differentiate, and pharmacological inhibitors of these enzymes have been shown to induce differentiation in several colon cancer cell lines. Butyrate at high (mM) concentration is both a precursor for acetyl-CoA and a known HDAC inhibitor that induces cell differentiation in colon cells. The dual role of butyrate raises the question whether its effects on HT29 cell differentiation are due to butyrate metabolism or to its HDAC inhibitor activity. To distinguish between these two possibilities, we used a tracer-based metabolomics approach to compare the metabolic changes induced by two different types of HDAC inhibitors (butyrate and the non-metabolic agent trichostatin A) and those induced by other acetyl-CoA precursors that do not inhibit HDAC (caprylic and capric acids). [1,2-13C2]-d-glucose was used as a tracer and its redistribution among metabolic intermediates was measured to estimate the contribution of glycolysis, the pentose phosphate pathway and the Krebs cycle to the metabolic profile of HT29 cells under the different treatments. The results demonstrate that both HDAC inhibitors (trichostatin A and butyrate) induce a common metabolic profile that is associated with histone deacetylase inhibition and differentiation of HT29 cells whereas the metabolic effects of acetyl-CoA precursors are different from those of butyrate. The experimental findings support the concept of crosstalk between metabolic and cell signalling events, and provide an experimental approach for the rational design of new combined therapies that exploit the potential synergism between metabolic adaptation and cell differentiation processes through modification of HDAC activity

    Magnetic resonance detects metabolic changes associated with chemotherapy-induced apoptosis

    Get PDF
    Apoptosis was induced by treating L1210 leukaemia cells with mechlorethamine, and SW620 colorectal cells with doxorubicin. The onset and progression of apoptosis were monitored by assessing caspase activation, mitochondrial transmembrane potential, phosphatidylserine externalization, DNA fragmentation and cell morphology. In parallel, 31P magnetic resonance (MR) spectra of cell extracts were recorded. In L1210 cells, caspase activation was detected at 4 h. By 3 h, the MR spectra showed a steady decrease in NTP and NAD, and a significant build-up of fructose 1,6-bisphosphate (F-1,6-P) dihydroxyacetonephosphate and glycerol-3-phosphate, indicating modulation of glycolysis. Treatment with iodoacetate also induced a build-up of F-1,6-P, while preincubation with two poly(ADP-ribose) polymerase inhibitors, 3-aminobenzamide and nicotinamide, prevented the drop in NAD and the build-up of glycolytic intermediates. This suggested that our results were due to inhibition of glyceraldehyde-3-phosphate dehydrogenase, possibly as a consequence of NAD depletion following poly(ADP-ribose) polymerase activation. Doxorubicin treatment of the adherent SW620 cells caused cells committed to apoptosis to detach. F-1,6-P was observed in detached cells, but not in treated cells that remained attached. This indicated that our observations were not cell line- or treatment-specific, but were correlated with the appearance of apoptotic cells following drug treatment. The 31P MR spectrum of tumours responding to chemotherapy could be modulated by similar effects

    Effects of intervention with sulindac and inulin/VSL#3 on mucosal and luminal factors in the pouch of patients with familial adenomatous polyposis

    Get PDF
    Contains fulltext : 97862.pdf (publisher's version ) (Open Access)BACKGROUND/AIM: In order to define future chemoprevention strategies for adenomas or carcinomas in the pouch of patients with familial adenomatous polyposis (FAP), a 4-weeks intervention with (1) sulindac, (2) inulin/VSL#3, and (3) sulindac/inulin/VSL#3 was performed on 17 patients with FAP in a single center intervention study. Primary endpoints were the risk parameters cell proliferation and glutathione S-transferase (GST) detoxification capacity in the pouch mucosa; secondary endpoints were the short chain fatty acid (SCFA) contents, pH, and cytotoxicity of fecal water. METHODS: Before the start and at the end of each 4-week intervention period, six biopsies of the pouch were taken and feces was collected during 24 h. Cell proliferation and GST enzyme activity was assessed in the biopsies and pH, SCFA contents, and cytotoxicity were assessed in the fecal water fraction. The three interventions (sulindac, inulin/VSL#3, sulindac/inulin/VSL#3) were compared with the Mann-Whitney U test. RESULTS: Cell proliferation was lower after sulindac or VSL#3/inulin, the combination treatment with sulindac/inulin/VSL#3 showed the opposite. GST enzyme activity was increased after sulindac or VSL#3/inulin, the combination treatment showed the opposite effect. However, no significance was reached in all these measures. Cytotoxicity, pH, and SCFA content of fecal water showed no differences at all among the three treatment groups. CONCLUSION: Our study revealed non-significant decreased cell proliferation and increased detoxification capacity after treatment with sulindac or VSL#3/inulin; however, combining both regimens did not show an additional effect

    The “Missing” Link Between Acute Hemodynamic Effect and Clinical Response

    Get PDF
    The hemodynamic, mechanical and electrical effects of cardiac resynchronization therapy (CRT) occur immediate and are lasting as long as CRT is delivered. Therefore, it is reasonable to assume that acute hemodynamic effects should predict long-term outcome. However, in the literature there is more evidence against than in favour of this idea. This raises the question of what factor(s) do relate to the benefit of CRT. There is increasing evidence that dyssynchrony, presumably through the resultant abnormal local mechanical behaviour, induces extensive remodelling, comprising structure, as well as electrophysiological and contractile processes. Resynchronization has been shown to reverse these processes, even in cases of limited hemodynamic improvement. These data may indicate the need for a paradigm shift in order to achieve maximal long-term CRT response

    Absence of pathogenic mitochondrial DNA mutations in mouse brain tumors

    Get PDF
    BACKGROUND: Somatic mutations in the mitochondrial genome occur in numerous tumor types including brain tumors. These mutations are generally found in the hypervariable regions I and II of the displacement loop and unlikely alter mitochondrial function. Two hypervariable regions of mononucleotide repeats occur in the mouse mitochondrial genome, i.e., the origin of replication of the light strand (O(L)) and the Arg tRNA. METHODS: In this study we examined the entire mitochondrial genome in a series of chemically induced brain tumors in the C57BL/6J strain and spontaneous brain tumors in the VM mouse strain. The tumor mtDNA was compared to that of mtDNA in brain mitochondrial populations from the corresponding syngeneic mouse host strain. RESULTS: Direct sequencing revealed a few homoplasmic base pair insertions, deletions, and substitutions in the tumor cells mainly in regions of mononucleotide repeats. A heteroplasmic mutation in the 16srRNA gene was detected in a spontaneous metastatic VM brain tumor. CONCLUSION: None of the mutations were considered pathogenic, indicating that mtDNA somatic mutations do not likely contribute to the initiation or progression of these diverse mouse brain tumors
    corecore