134 research outputs found

    VIBRATION ANALYSIS OF SINGLE LAP JOINT OF COMPOSITE PLATES BASED ON VARIATIONS OF PLATE THICKNESS AND OVERLAP LENGTH

    Get PDF
    Adhesive bonding is widely used for joining metals or composites in marine, aircraft, automotive, railroad, and civil construction industries. Adhesive single lap joint offers many advantages in terms of time and cost savings, has good damping characteristics, and provides high joint strength compared to another conventional joint. In this study, an analysis of free vibration of composite single lap joint has been carried out using by modal analysis solver i.e. ANSYS. Optimization study is then carried out to obtain the optimal design for vibration resistance. The simulation results of the natural frequency for each variation of joint thickness and overlap length are obtained through this study. The results show that increasing thickness and overlap length will increase the value of natural frequency as well, thus giving better vibration resistance. It is found that the optimum thickness and overlap length are 2.54 mm and 70 mm, respectively. The results point out the importance of joint thickness and overlap length for the vibration resistance of single lap joint of composite plates

    Collapse of the hyperfine magnetic field at the Ru site in ferromagnetic rare earth intermetallics

    Full text link
    The M\"{o}ssbauer Effect(ME) is frequently used to investigate magnetically ordered systems. One usually assumes that the magnetic order induces a hyperfine magnetic field, BhyperfineB_{hyperfine}, at the ME active site. This is the case in the ruthenates, where the temperature dependence of BhyperfineB_{hyperfine} at 99^{99}Ru sites tracks the temperature dependence of the ferromagnetic or antiferromagnetic order. However this does not happen in the rare-earth intermetallics, GdRu2_2 and HoRu2_2. Specific heat, magnetization, magnetic susceptibility, M\"{o}ssbauer effect, and neutron diffraction have been used to study the nature of the magnetic order in these materials. Both materials are found to order ferromagnetically at 82.3 and 15.3 K, respectively. Despite the ferromagnetic order of the rare earth moments in both systems, there is no evidence of a correspondingly large BhyperfineB_{hyperfine} in the M\"{o}ssbauer spectrum at the Ru site. Instead the measured spectra consist of a narrow peak at all temperatures which points to the absence of magnetic order. To understand the surprising absence of a transferred hyperfine magnetic field, we carried out {\it ab initio} calculations which show that spin polarization is present only on the rare-earth site. The electron spin at the Ru sites is effectively unpolarized and, as a result, BhyperfineB_{hyperfine} is very small at those sites. This occurs because the 4dd Ru electrons form broad conduction bands rather than localized moments. These 4dd conduction bands are polarized in the region of the Fermi energy and mediate the interaction between the localized rare earth moments.Comment: 34 pages -Revtex + 17 ps figure

    13-Series resolvins mediate the leukocyte-platelet actions of atorvastatin and pravastatin in inflammatory arthritis

    Get PDF
    This work was supported by funding from the European Research Council under the European Union’s Horizon 2020 research and innovation program (Grant 677542), a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (Grant 107613/Z/15/Z), and the Barts Charity (Grant MGU0343). This work was also funded, in part, by Medical Research Council Advance Course Masters (Grant MR/J015741/1). The authors declare no conflicts of interest

    Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus

    Get PDF
    Several techniques are under development to diagnose oesophageal adenocarcinoma at an earlier stage. We have demonstrated the potential of Raman spectroscopy, an optical diagnostic technique, for the identification and classification of malignant changes. However, there is no clear recognition of the biochemical changes that distinguish between the different stages of disease. Our aim is to understand these changes through Raman mapping studies. Raman spectral mapping was used to analyse 20-μm sections of tissue from 29 snap-frozen oesophageal biopsies. Contiguous haematoxylin and eosin sections were reviewed by a consultant pathologist. Principal component analysis was used to identify the major differences between the spectra across each map. Pseudocolour score maps were generated and the peaks of corresponding loads identified enabling visualisation of the biochemical changes associated with malignancy. Changes were noted in the distribution of DNA, glycogen, lipids and proteins. The mean spectra obtained from selected regions demonstrate increased levels of glycogen in the squamous area compared with increased DNA levels in the abnormal region. Raman spectroscopy is a highly sensitive and specific technique for demonstration of biochemical changes in the carcinogenesis of Barrett's oesophagus. There is potential for in vivo application for real-time endoscopic optical diagnosis

    Microscale characterization of prostate biopsies tissues using optical coherence elastography and second harmonic generation imaging

    Get PDF
    © 2018 USCAP, Inc All rights reserved. Photonics, especially optical coherence elastography (OCE) and second harmonic generation (SHG) imaging are novel high-resolution imaging modalities for characterization of biological tissues. Following our preliminary experience, we hypothesized that OCE and SHG imaging would delineate the microstructure of prostate tissue and aid in distinguishing cancer from the normal benign prostatic tissue. Furthermore, these approaches may assist in characterization of the grade of cancer, as well. In this study, we confirmed a high diagnostic accuracy of OCE and SHG imaging in the detection and characterization of prostate cancer for a large set of biopsy tissues obtained from men suspected to have prostate cancer using transrectal ultrasound (TRUS). The two techniques and methods described here are complementary, one depicts the stiffness of tissues and the other illustrates the orientation of collagen structure around the cancerous lesions. The results showed that stiffness of cancer tissue was ∼57.63% higher than that of benign tissue (Young's modulus of 698.43±125.29 kPa for cancerous tissue vs 443.07±88.95 kPa for benign tissue with OCE. Using histology as a reference standard and 600 kPa as a cut-off threshold, the data analysis showed sensitivity and specificity of 89.6 and 99.8%, respectively. Corresponding positive and negative predictive values were 99.5 and 94.6%, respectively. There was a significant difference noticed in terms of Young's modulus for different Gleason scores estimated by OCE (P-value<0.05). For SHG, distinct patterns of collagen distribution were seen for different Gleason grade disease with computed quantification employing a ratio of anisotropic to isotropic (A:I ratio) and this correlated with disease aggressiveness

    Site-Specific Labeling of Annexin V with F-18 for Apoptosis Imaging

    Get PDF
    Annexin V is useful in detecting apoptotic cells by binding to phosphatidylserine (PS) that is exposed on the outer surface of the cell membrane during apoptosis. In this study, we examined the labeling of annexin V-128, a mutated form of annexin V that has a single cysteine residue at the NH2 terminus, with the thiol-selective reagent 18F-labeling agent N-[4-[(4-[18F]fluorobenzylidene)aminooxy]butyl]maleimide ([18F]FBABM). We also examined the cell binding affinity of the 18F-labeled annexin V-128 ([18F]FAN-128). [18F]FBABM was synthesized in two-step, one-pot method modified from literature procedure. (Toyokuni et al., Bioconjugate Chem. 2003, 14, 1253−1259). The average yield of [18F]FBABM was 23 ± 4% (n = 4, decay-corrected) and the specific activity was ∼6000 Ci/mmol. The total synthesis time was ∼92 min. The critical improvement of this study was identifying and then developing a purification method to remove an impurity N-[4-[(4-dimethylaminobenzylidene)aminooxy]butyl]maleimide 4, whose presence dramatically decreased the yield of protein labeling. Conjugation of [18F]FBABM with the thiol-containing annexin V-128 gave [18F]FAN-128 in 37 ± 9% yield (n = 4, decay corrected). Erythrocyte binding assay of [18F]FAN-128 showed that this modification of annexin V-128 did not compromise its membrane binding affinity. Thus, an in vivo investigation of [18F]FAN-128 as an apoptosis imaging agent is warranted

    Raman spectroscopy in head and neck cancer

    Get PDF
    In recent years there has been much interest in the use of optical diagnostics in cancer detection. Early diagnosis of cancer affords early intervention and greatest chance of cure. Raman spectroscopy is based on the interaction of photons with the target material producing a highly detailed biochemical 'fingerprint' of the sample. It can be appreciated that such a sensitive biochemical detection system could confer diagnostic benefit in a clinical setting. Raman has been used successfully in key health areas such as cardiovascular diseases, and dental care but there is a paucity of literature on Raman spectroscopy in Head and Neck cancer. Following the introduction of health care targets for cancer, and with an ever-aging population the need for rapid cancer detection has never been greater. Raman spectroscopy could confer great patient benefit with early, rapid and accurate diagnosis. This technique is almost labour free without the need for sample preparation. It could reduce the need for whole pathological specimen examination, in theatre it could help to determine margin status, and finally peripheral blood diagnosis may be an achievable target

    Microcalcifications in breast cancer: novel insights into the molecular mechanism and functional consequence of mammary mineralisation.

    Get PDF
    BACKGROUND: Mammographic microcalcifications represent one of the most reliable features of nonpalpable breast cancer yet remain largely unexplored and poorly understood. METHODS: We report a novel model to investigate the in vitro mineralisation potential of a panel of mammary cell lines. Primary mammary tumours were produced by implanting tumourigenic cells into the mammary fat pads of female BALB/c mice. RESULTS: Hydroxyapatite (HA) was deposited only by the tumourigenic cell lines, indicating mineralisation potential may be associated with cell phenotype in this in vitro model. We propose a mechanism for mammary mineralisation, which suggests that the balance between enhancers and inhibitors of physiological mineralisation are disrupted. Inhibition of alkaline phosphatase and phosphate transport prevented mineralisation, demonstrating that mineralisation is an active cell-mediated process. Hydroxyapatite was found to enhance in vitro tumour cell migration, while calcium oxalate had no effect, highlighting potential consequences of calcium deposition. In addition, HA was also deposited in primary mammary tumours produced by implanting the tumourigenic cells into the mammary fat pads of female BALB/c mice. CONCLUSION: This work indicates that formation of mammary HA is a cell-specific regulated process, which creates an osteomimetic niche potentially enhancing breast tumour progression. Our findings point to the cells mineralisation potential and the microenvironment regulating it, as a significant feature of breast tumour development

    Raman Spectroscopy and Regenerative Medicine: A Review

    Get PDF
    The field of regenerative medicine spans a wide area of the biomedical landscape—from single cell culture in laboratories to human whole-organ transplantation. To ensure that research is transferrable from bench to bedside, it is critical that we are able to assess regenerative processes in cells, tissues, organs and patients at a biochemical level. Regeneration relies on a large number of biological factors, which can be perturbed using conventional bioanalytical techniques. A versatile, non-invasive, non-destructive technique for biochemical analysis would be invaluable for the study of regeneration; and Raman spectroscopy is a potential solution. Raman spectroscopy is an analytical method by which chemical data are obtained through the inelastic scattering of light. Since its discovery in the 1920s, physicists and chemists have used Raman scattering to investigate the chemical composition of a vast range of both liquid and solid materials. However, only in the last two decades has this form of spectroscopy been employed in biomedical research. Particularly relevant to regenerative medicine are recent studies illustrating its ability to characterise and discriminate between healthy and disease states in cells, tissue biopsies and in patients. This review will briefly outline the principles behind Raman spectroscopy and its variants, describe key examples of its applications to biomedicine, and consider areas of regenerative medicine that would benefit from this non-invasive bioanalytical tool
    corecore