18,745 research outputs found

    Self lensing effects for compact stars and their mass-radius relation

    Full text link
    During the last couple of years astronomers and astrophysicists have been debating on the fact whether the so called `strange stars' - stars made up of strange quark matter, have been discovered with the candidates like SAX J1808.4-3658, 4U 1728-34, RX J1856.5-3754, etc. The main contention has been the estimation of radius of the star for an assumed mass of ~ 1.4 M_sun and to see whether the point overlaps with the graphs for the neutron star equation of state or whether it goes to the region of stars made of strange matter equation of state. Using the well established formulae from general relativity for the gravitational redshift and the `lensing effect' due to bending of photon trajectories, we, in this letter, relate the parameters M and R with the observable parameters, the redshift z and the radiation radius R_\infty, thus constraining both M and R for specific ranges, without any other arbitrariness. With the required inputs from observations, one ought to incorporate the effects of self lensing of the compact stars which has been otherwise ignored in all of the estimations done so far. Nonetheless, these effect of self lensing makes a marked difference and constraints on the M-R relation.Comment: 7 pages, 1 figure, accepted for publication in Mod. Phys. Lett.

    Three-dimensional cell to tissue assembly process

    Get PDF
    The present invention relates a 3-dimensional cell to tissue and maintenance process, more particularly to methods of culturing cells in a culture environment, either in space or in a gravity field, with minimum fluid shear stress, freedom for 3-dimensional spatial orientation of the suspended particles and localization of particles with differing or similar sedimentation properties in a similar spatial region

    Bulk and contact-sensitized photocarrier generation in single layer TPD devices

    Full text link
    In this paper, we report on the photoelectronic properties of TPD studied in sandwich geometry. In particular, we have obtained from both forward and reverse bias measurements the "mew-tau" product for holes in TPD. "mew" is the hole mobility and "tau" the carrier trapping time. The "mew-tau" product is a measure of the electronic quality of the material and allows a quantitative comparison of different samples. We have carried out numerical simulations to understand the photocurrent in these structures. We show that in reverse bias, the photocurrent (PC) is due to bulk. The carrier generation is governed by field assisted exciton dissociation at electric fields greater than 10^6 V/cm. At lower fields the generation of carriers occurs spontaneously in the bulk of the sample. In forward bias, the photocurrent is due to exciton dissociation at the ITO contact. We also obtain a "mew-tau" product for holes from forward bias PC measurements which is in agreement with the value obtained from reverse bias measurements. Based on our experiments, we demonstrate that TPD in a sandwich structure is a good candidate for cheap large area solar blind UV detector arrays.Comment: Submitted to J. Appl. Phy

    The Spatial Correlation of Bent-Tail Galaxies and Galaxy Clusters

    Full text link
    We have completed a deep radio continuum survey covering 86 square degrees of the Spitzer-South Pole Telescope deep field to test whether bent-tail galaxies are associated with galaxy clusters. We present a new catalogue of 22 bent-tail galaxies and a further 24 candidate bent-tail galaxies. Surprisingly, of the 8 bent-tail galaxies with photometric redshifts, only two are associated with known clusters. While the absence of bent-tail sources in known clusters may be explained by effects such as sensitivity, the absence of known clusters associated with most bent-tail galaxies casts doubt upon current models of bent-tail galaxies.Comment: Accepted by MNRA

    Konstanta vezanja B-mezon – kvark i širina raspada B∗-mezona

    Get PDF
    The pion - quark coupling constant (gπq q) and the B-meson - quark coupling constant (gB-qq) have been found in the processes B*- → B-π0 and B*- → B-γ. Their decay widths have been calculated through the direct coupling of π0 and B- with quarks which are static inside B*- meson.Određuju se konstante vezanja pion – kvark (gπqq) i B-mezon – kvark (gB−qq) u procesima B∗−→B−π0 i B∗−→B−γ. Njihove se širine raspada računaju preko izravnog vezanja π0 i B− s kvarkovima koji miruju u B∗− mezonu

    Implementation of ILLIAC 4 algorithms for multispectral image interpretation

    Get PDF
    Research has focused on the design and partial implementation of a comprehensive ILLIAC software system for computer-assisted interpretation of multispectral earth resources data such as that now collected by the Earth Resources Technology Satellite. Research suggests generally that the ILLIAC 4 should be as much as two orders of magnitude more cost effective than serial processing computers for digital interpretation of ERTS imagery via multivariate statistical classification techniques. The potential of the ARPA Network as a mechanism for interfacing geographically-dispersed users to an ILLIAC 4 image processing facility is discussed

    Konstanta vezanja B-mezon – kvark i širina raspada B∗-mezona

    Get PDF
    The pion - quark coupling constant (gπq q) and the B-meson - quark coupling constant (gB-qq) have been found in the processes B*- → B-π0 and B*- → B-γ. Their decay widths have been calculated through the direct coupling of π0 and B- with quarks which are static inside B*- meson.Određuju se konstante vezanja pion – kvark (gπqq) i B-mezon – kvark (gB−qq) u procesima B∗−→B−π0 i B∗−→B−γ. Njihove se širine raspada računaju preko izravnog vezanja π0 i B− s kvarkovima koji miruju u B∗− mezonu

    Radiative corrections and quantum gates in molecular systems

    Full text link
    We propose a method for quantum information processing using molecules coupled to an external laser field. This utilizes molecular interactions, control of the external field and an effective energy shift of the doubly-excited state of two coupled molecules. Such a level shift has been seen in the two-photon resonance experiments recently reported in Ref. [1]. Here we show that this can be explained in terms of the QED Lamb shift. We quantify the performance of the proposed quantum logic gates in the presence of dissipative mechanisms. The unitary transformations required for performing one- and two-qubit operations can be implemented with present day technology.Comment: 4 pages, 3 figures, Updated to correct important missing referenc
    corecore