5,361 research outputs found

    Optimal Trimming and Outlier Elimination

    Get PDF
    Five data sets with known true values are used to determine the optimal number of pairs that should be trimmed in order to produce the minimum relative error. The optimal trimming in the five data sets is found to be 1%, 5%, 7%, 10% and 28%. The 28% rate is shown to be an outlier among the five data sets. Results of four data sets are used to establish cutoff values for outlier detection in two robust methods of outlier detection

    Reflections on Human Suffering

    Get PDF

    Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of C-14

    Get PDF
    Processes in the soil remain among the least well-characterized components of the carbon cycle. Arbuscular mycorrhizal (AM) fungi are ubiquitous root symbionts in many terrestrial ecosystems and account for a large fraction of photosynthate in a wide range of ecosystems; they therefore play a key role in the terrestrial carbon cycle. A large part of the fungal mycelium is outside the root ( the extraradical mycelium, ERM) and, because of the dispersed growth pattern and the small diameter of the hyphae (<5 micrometers), exceptionally difficult to study quantitatively. Critically, the longevity of these. ne hyphae has never been measured, although it is assumed to be short. To quantify carbon turnover in these hyphae, we exposed mycorrhizal plants to fossil ("carbon-14 - dead") carbon dioxide and collected samples of ERM hyphae ( up to 116 micrograms) over the following 29 days. Analyses of their carbon-14 content by accelerator mass spectrometry (AMS) showed that most ERM hyphae of AM fungi live, on average, 5 to 6 days. This high turnover rate reveals a large and rapid mycorrhizal pathway of carbon in the soil carbon cycle

    Robustness, Power and Interpretability of Pairwise Tests of Discriminant Functions in MANOVA

    Get PDF
    Limiting follow-up hypotheses to be tested can reduce problems relating to the control of Type I and Type II errors in multivariate analysis of variance (MANOVA). Such limitations can also improve the interpretability of results. The importance of sample size, shape of population distribution, within-group correlations and heterogeneity of variances are demonstrated. The protected greatest characteristic root (GCR) procedure is shown to work well for small, group size, N (≤ 10). The unprotected GCR is shown to work well for larger N

    Optical measurement of propeller blade deflections in a spin facility

    Get PDF
    A nonintrusive optical system for measuring propeller blade deflections has been used in the NASA Lewis dynamic spin facility. Deflection of points at the leading and trailing edges of a blade section can be obtained with a narrow light beam from a low power helium-neon laser. A system used to measure these deflections at three spanwise locations is described. Modifications required to operate the lasers in a near-vacuum environment are also discussed

    Neutrinoless Double Beta Decay and Lepton Flavor Violation

    Get PDF
    We point out that extensions of the Standard Model with low scale (~TeV) lepton number violation (LNV) generally lead to a pattern of lepton flavor violation (LFV) experimentally distinguishable from the one implied by models with GUT scale LNV. As a consequence, muon LFV processes provide a powerful diagnostic tool to determine whether or not the effective neutrino mass can be deduced from the rate of neutrinoless double beta decay. We discuss the role of \mu -> e \gamma and \mu -> e conversion in nuclei, which will be studied with high sensitivity in forthcoming experiments.Comment: 4 pages, 3 figure

    Electrically charged fluids with pressure in Newtonian gravitation and general relativity in d spacetime dimensions: theorems and results for Weyl type systems

    Full text link
    Previous theorems concerning Weyl type systems, including Majumdar-Papapetrou systems, are generalized in two ways, namely, we take these theorems into d spacetime dimensions (d4{\rm d}\geq4), and we also consider the very interesting Weyl-Guilfoyle systems, i.e., general relativistic charged fluids with nonzero pressure. In particular within Newton-Coulomb theory of charged gravitating fluids, a theorem by Bonnor (1980) in three-dimensional space is generalized to arbitrary (d1)>3({\rm d}-1)>3 space dimensions. Then, we prove a new theorem for charged gravitating fluid systems in which we find the condition that the charge density and the matter density should obey. Within general relativity coupled to charged dust fluids, a theorem by De and Raychaudhuri (1968) in four-dimensional spacetimes in rendered into arbitrary d>4{\rm d}>4 dimensions. Then a theorem, new in d=4{\rm d}=4 and d>4{\rm d}>4 dimensions, for Weyl-Guilfoyle systems, is stated and proved, in which we find the condition that the charge density, the matter density, the pressure, and the electromagnetic energy density should obey. This theorem comprises, as particular cases, a theorem by Gautreau and Hoffman (1973) and results in four dimensions by Guilfoyle (1999). Upon connection of an interior charged solution to an exterior Tangherlini solution (i.e., a Reissner-Nordstr\"om solution in d-dimensions), one is able to give a general definition for gravitational mass for this kind of relativistic systems and find a mass relation with the several quantities of the interior solution. It is also shown that for sources of finite extent the mass is identical to the Tolman mass.Comment: 27 page

    Constraints on T-Odd, P-Even Interactions from Electric Dipole Moments

    Get PDF
    We construct the relationship between nonrenormalizable,effective, time-reversal violating (TV) parity-conserving (PC) interactions of quarks and gauge bosons and various low-energy TVPC and TV parity-violating (PV) observables. Using effective field theory methods, we delineate the scenarious under which experimental limits on permanent electric dipole moments (EDM's) of the electron, neutron, and neutral atoms as well as limits on TVPC observables provide the most stringent bounds on new TVPC interactions. Under scenarios in which parity invariance is restored at short distances, the one-loop EDM of elementary fermions generate the most severe constraints. The limits derived from the atomic EDM of 199^{199}Hg are considerably weaker. When parity symmetry remains broken at short distances, direct TVPC search limits provide the least ambiguous bounds. The direct limits follow from TVPC interactions between two quarks.Comment: 43 pages, 9 figure

    Nucleon Structure and Parity-Violating Electron Scattering

    Get PDF
    We review the area of strange quark contributions to nucleon structure. In particular, we focus on current models of strange quark vector currents in the nucleon and the associated parity-violating elastic electron scattering experiments from which vector- and axial-vector currents are extractedComment: 40 pages including 7 figures; review article to be published in Int. J. Mod. Phys.

    A simple functional form for proton-nucleus total reaction cross sections

    Get PDF
    A simple functional form has been found that gives a good representation of the total reaction cross sections for the scattering of protons from (15) nuclei spanning the mass range 9{}^{9}Be to 238{}^{238}U and for proton energies ranging from 20 to 300 MeV.Comment: 13 pages, 7 figures, bib fil
    corecore