11,274 research outputs found
Prediction of anomalous diffusion and algebraic relaxations for long-range interacting systems, using classical statistical mechanics
We explain the ubiquity and extremely slow evolution of non gaussian
out-of-equilibrium distributions for the Hamiltonian Mean-Field model, by means
of traditional kinetic theory. Deriving the Fokker-Planck equation for a test
particle, one also unambiguously explains and predicts striking slow algebraic
relaxation of the momenta autocorrelation, previously found in numerical
simulations. Finally, angular anomalous diffusion are predicted for a large
class of initial distributions. Non Extensive Statistical Mechanics is shown to
be unnecessary for the interpretation of these phenomena
How Much Fertilizer for Corn?
Support prices for corn are high and certain. Many Iowa farmers could profitably push their corn yields up to 100 to 125 bushels per acre in favorable seasons. Here\u27s what heavy fertilizer applications can do
A Boron–Boron Double Transborylation Strategy for the Synthesis of gem-Diborylalkanes
Olefin hydroboration reactions provide efficient access to synthetically versatile and easily handled organoboronic esters. In this study, we demonstrate that the commercially available organoborane reagent 9-borabicyclo[3.3.1]nonane (H-B-9-BBN) can serve as a catalyst for the sequential double hydroboration of alkynes using pinacolborane (HBpin). This strategy, which is effective for a wide range of terminal alkynes, is predicated upon a key C(sp3)-B/B-H transborylation reaction. Transition-state thermodynamic parameters and 10-boron-isotopic labeling experiments are indicative of a σ-bond metathesis exchange pathway
The triple oxygen isotope tracer of primary productivity in a dynamic ocean model
Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycle 28 (2014): 538–552, doi:10.1002/2013GB004704.The triple oxygen isotopic composition of dissolved oxygen (17Δdis) was added to the ocean ecosystem and biogeochemistry component of the Community Earth System Model, version 1.1.1. Model simulations were used to investigate the biological and physical dynamics of 17Δdis and assess its application as a tracer of gross photosynthetic production (gross oxygen production (GOP)) of O2 in the ocean mixed layer. The model reproduced large-scale patterns of 17Δdis found in observational data across diverse biogeographical provinces. Mixed layer model performance was best in the Pacific and had a negative bias in the North Atlantic and a positive bias in the Southern Ocean. Based on model results, the steady state equation commonly used to calculate GOP from tracer values overestimated the globally averaged model GOP by 29%. Vertical entrainment/mixing and the time rate of change of 17Δdis were the two largest sources of bias when applying the steady state method to calculate GOP. Entrainment/mixing resulted in the largest overestimation in midlatitudes and during summer and fall and almost never caused an underestimation of GOP. The tracer time rate of change bias resulted both in underestimation of GOP (e.g., during spring blooms at high latitudes) and overestimation (e.g., during the summer following a bloom). Seasonally, bias was highest in the fall (September-October-November in the Northern Hemisphere, March-April-May in the Southern), overestimating GOP by 62%, globally averaged. Overall, the steady state method was most accurate in equatorial and low-latitude regions where it estimated GOP to within ±10%. Field applicable correction terms are derived for entrainment and mixing that capture 86% of model vertical bias and require only mixed layer depth history and triple oxygen isotope measurements from two depths.We acknowledge support from Center
for Microbial Oceanography Research
and Education (CMORE) (NSF EF-0424599)
and NOAA Climate Program Office
(NA 100AR4310093).2014-11-2
A phytoplankton model for the allocation of gross photosynthetic energy including the trade‐offs of diazotrophy
Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 123 (2018): 1796-1816, doi:10.1029/2017JG004263.Gross photosynthetic activity by phytoplankton is directed to linear and alternative electron pathways that generate ATP, reductant, and fix carbon. Ultimately less than half is directed to net growth. Here we present a phytoplankton cell allocation model that explicitly represents a number of cell metabolic processes and functional pools with the goal of evaluating ATP and reductant demands as a function of light, nitrate, iron, oxygen, and temperature for diazotrophic versus nondiazotrophic growth. We employ model analogues of Synechoccocus and Crocosphaera watsonii, to explore the trade‐offs of diazotrophy over a range of environmental conditions. Model analogues are identical in construction, except for an iron quota associated with nitrogenase, an additional respiratory demand to remove oxygen in order to protect nitrogenase and an additional ATP demand to split dinitrogen. We find that these changes explain observed differences in growth rate and iron limitation between diazotrophs and nondiazotrophs. Oxygen removal imparted a significantly larger metabolic cost to diazotrophs than ATP demand for fixing nitrogen. Results suggest that diazotrophs devote a much smaller fraction of gross photosynthetic energy to growth than nondiazotrophs. The phytoplankton cell allocation model model provides a predictive framework for how photosynthate allocation varies with environmental conditions in order to balance cellular demands for ATP and reductant across phytoplankton functional groups.DOC | NOAA | Climate Program Office (CPO) Grant Number: NA100AR4310093;
National Science Foundation (NSF) Grant Number: EF‐0424599;
Center for Microbial Oceanography Research and Education (CMORE) Grant Number: NSF EF‐0424599;
NOAA Global Carbon Program Grant Number: NA100AR43100932018-11-0
Models of the SL9 Impacts II. Radiative-hydrodynamic Modeling of the Plume Splashback
We model the plume "splashback" phase of the SL9 collisions with Jupiter
using the ZEUS-3D hydrodynamic code. We modified the Zeus code to include gray
radiative transport, and we present validation tests. We couple the infalling
mass and momentum fluxes of SL9 plume material (from paper I) to a jovian
atmospheric model. A strong and complex shock structure results. The modeled
shock temperatures agree well with observations, and the structure and
evolution of the modeled shocks account for the appearance of high excitation
molecular line emission after the peak of the continuum light curve. The
splashback region cools by radial expansion as well as by radiation. The
morphology of our synthetic continuum light curves agree with observations over
a broad wavelength range (0.9 to 12 microns). A feature of our ballistic plume
is a shell of mass at the highest velocities, which we term the "vanguard".
Portions of the vanguard ejected on shallow trajectories produce a lateral
shock front, whose initial expansion accounts for the "third precursors" seen
in the 2-micron light curves of the larger impacts, and for hot methane
emission at early times. Continued propagation of this lateral shock
approximately reproduces the radii, propagation speed, and centroid positions
of the large rings observed at 3-4 microns by McGregor et al. The portion of
the vanguard ejected closer to the vertical falls back with high z-component
velocities just after maximum light, producing CO emission and the "flare" seen
at 0.9 microns. The model also produces secondary maxima ("bounces") whose
amplitudes and periods are in agreement with observations.Comment: 13 pages, 9 figures (figs 3 and 4 in color), accepted for Ap.J.
latex, version including full figures at:
http://oobleck.tn.cornell.edu/jh/ast/papers/slplume2-20.ps.g
Surface phase transitions in one-dimensional channels arranged in a triangular cross-sectional structure: Theory and Monte Carlo simulations
Monte Carlo simulations and finite-size scaling analysis have been carried
out to study the critical behavior in a submonolayer lattice-gas of interacting
monomers adsorbed on one-dimensional channels arranged in a triangular
cross-sectional structure. The model mimics a nanoporous environment, where
each nanotube or unit cell is represented by a one-dimensional array. Two kinds
of lateral interaction energies have been considered: , interaction
energy between nearest-neighbor particles adsorbed along a single channel and
, interaction energy between particles adsorbed across
nearest-neighbor channels. For and , successive planes are
uncorrelated, the system is equivalent to the triangular lattice and the
well-known
ordered phase is found at low temperatures and a coverage, , of 1/3
. In the more general case ( and ), a
competition between interactions along a single channel and a transverse
coupling between sites in neighboring channels allows to evolve to a
three-dimensional adsorbed layer. Consequently, the and structures "propagate" along the
channels and new ordered phases appear in the adlayer. The Monte Carlo
technique was combined with the recently reported Free Energy Minimization
Criterion Approach (FEMCA), to predict the critical temperatures of the
order-disorder transformation. The excellent qualitative agreement between
simulated data and FEMCA results allow us to interpret the physical meaning of
the mechanisms underlying the observed transitions.Comment: 24 pages, 6 figure
Palliative and supportive care in head and neck cancer: United Kingdom National Multidisciplinary Guidelines
This is the official guideline endorsed by the specialty associations involved in the care of head and neck cancer patients in the UK. It provides recommendations on the assessments and interventions for this group of patients receiving palliative and supportive care. Recommendations • Palliative and supportive care must be multidisciplinary. (G) • All core team members should have training in advanced communication skills. (G) • Palliative surgery should be considered in selected cases. (R) • Hypofractionated or short course radiotherapy should be considered for local pain control and for painful bony metastases. (R) • All palliative patients should have a functional endoscopic evaluation of swallowing (FEES) assessment of swallow to assess for risk of aspiration. (G) • Pain relief should be based on the World Health Organization pain ladder. (R) • Specialist pain management service involvement should be considered early for those with refractory pain. (G) • Constipation should be avoided by the judicious use of prophylactic laxatives and the correction of systemic causes such as dehydration, hypercalcaemia and hypothyroidism. (G) • Organic causes of confusion should be identified and corrected where appropriate, failing this, treatment with benzodiazepines or antipsychotics should be considered. (G) • Patients with symptoms suggestive of spinal metastases or metastatic cord compression must be managed in accordance with the National Institute for Health and Care Excellence guidance. (R) • Cardiopulmonary resuscitation is inappropriate in the palliative dying patient. (R) • 'Do not attempt cardiopulmonary resuscitation' orders should be completed and discussed with the patient and/or the family unless good reasons exist not to do so where appropriate. This is absolutely necessary when a patient's care is to be managed at home. (G)
Dynamical stability criterion for inhomogeneous quasi-stationary states in long-range systems
We derive a necessary and sufficient condition of linear dynamical stability
for inhomogeneous Vlasov stationary states of the Hamiltonian Mean Field (HMF)
model. The condition is expressed by an explicit disequality that has to be
satisfied by the stationary state, and it generalizes the known disequality for
homogeneous stationary states. In addition, we derive analogous disequalities
that express necessary and sufficient conditions of formal stability for the
stationary states. Their usefulness, from the point of view of linear dynamical
stability, is that they are simpler, although they provide only sufficient
criteria of linear stability. We show that for homogeneous stationary states
the relations become equal, and therefore linear dynamical stability and formal
stability become equivalent.Comment: Submitted to Journal of Statistical Mechanics: Theory and Experimen
- …