4,906 research outputs found

    Development of an early warning system of crop moisture conditions using passive microwave

    Get PDF
    Emissivities were calculated from the Nimbus 5 electrically scanning microwave radiometer (ESMR) over 25 km grid cells for the southern Great Plains includin the western two-thirds of Kansas and Oklahoma and northwest Texas. These emissivities, normalized for seasonal temperature changes, were in excellent agreement with theory and measurements made from aircraft and truck sensors at the 1.55 cm wavelength of ESMR. These emissivities were related to crop moisture conditions of the winter wheat in the major wheat producing counties of the three states. High correlations were noted between emissitivity and an antecedent precipitation index (API) used to infer soil moisture for periods when the soils were essentially bare. The emissivities from ESMR were related through API and actual crop condition reports to progress of fall planting, adequacy of crop moisture for stand establishment, and periods of excessive moisture that necessitated replanting. Periods of prolonged frozen soil in the winter were observable at several grid points. The average emissivities of the canopy/soil surface during the maximum canopy development times in the spring showed a good agreement with moisture stress inferred from rainfall and yield data

    Influence of Phase Matching on the Cooper Minimum in Ar High Harmonic Spectra

    Get PDF
    We study the influence of phase matching on interference minima in high harmonic spectra. We concentrate on structures in atoms due to interference of different angular momentum channels during recombination. We use the Cooper minimum (CM) in argon at 47 eV as a marker in the harmonic spectrum. We measure 2d harmonic spectra in argon as a function of wavelength and angular divergence. While we identify a clear CM in the spectrum when the target gas jet is placed after the laser focus, we find that the appearance of the CM varies with angular divergence and can even be completely washed out when the gas jet is placed closer to the focus. We also show that the argon CM appears at different wavelengths in harmonic and photo-absorption spectra measured under conditions independent of any wavelength calibration. We model the experiment with a simulation based on coupled solutions of the time-dependent Schr\"odinger equation and the Maxwell wave equation, including both the single atom response and macroscopic effects of propagation. The single atom calculations confirm that the ground state of argon can be represented by its field free pp symmetry, despite the strong laser field used in high harmonic generation. Because of this, the CM structure in the harmonic spectrum can be described as the interference of continuum ss and dd channels, whose relative phase jumps by π\pi at the CM energy, resulting in a minimum shifted from the photoionization result. We also show that the full calculations reproduce the dependence of the CM on the macroscopic conditions. We calculate simple phase matching factors as a function of harmonic order and explain our experimental and theoretical observation in terms of the effect of phase matching on the shape of the harmonic spectrum. Phase matching must be taken into account to fully understand spectral features related to HHG spectroscopy

    Transitions of protein traffic from cardiac ER to junctional SR

    Get PDF
    The junctional sarcoplasmic reticulum (jSR) is an important and unique ER subdomain in the adult myocyte that concentrates resident proteins to regulate Ca(2+) release. To investigate cellular mechanisms for sorting and trafficking proteins to jSR, we overexpressed canine forms of junctin (JCT) or triadin (TRD) in adult rat cardiomyocytes. Protein accumulation over time was visualized by confocal fluorescence microscopy using species-specific antibodies. Newly synthesized JCTdog and TRDdog appeared by 12-24h as bright fluorescent puncta close to the nuclear surface, decreasing in intensity with increasing radial distance. With increasing time (24-48h), fluorescent puncta appeared at further radial distances from the nuclear surface, eventually populating jSR similar to steady-state patterns. CSQ2-DsRed, a form of CSQ that polymerizes ectopically in rough ER, prevented anterograde traffic of newly made TRDdog and JCTdog, demonstrating common pathways of intracellular trafficking as well as in situ binding to CSQ2 in juxtanuclear rough ER. Reversal of CSQ-DsRed interactions occurred when a form of TRDdog was used in which CSQ2-binding sites are removed ((del)TRD). With increasing levels of expression, CSQ2-DsRed revealed a novel smooth ER network that surrounds nuclei and connects the nuclear axis. TRDdog was retained in smooth ER by binding to CSQ2-DsRed, but escaped to populate jSR puncta. TRDdog and (del)TRD were therefore able to elucidate areas of ER-SR transition. High levels of CSQ2-DsRed in the ER led to loss of jSR puncta labeling, suggesting a plasticity of ER-SR transition sites. We propose a model of ER and SR protein traffic along microtubules, with prominent transverse/radial ER trafficking of JCT and TRD along Z-lines to populate jSR, and an abundant longitudinal/axial smooth ER between and encircling myonuclei, from which jSR proteins traffic

    Strongly dispersive transient Bragg grating for high harmonics

    Get PDF
    We create a transient Bragg grating in a high-harmonic generation medium using two counterpropagating pulses. The Bragg grating disperses the harmonics in angle and can diffract a large bandwidth with temporal resolution limited only by the source size. © 2010 Optical Society of America

    Strong field ionization to multiple electronic states in water

    Full text link
    High harmonic spectra show that laser-induced strong field ionization of water has a significant contribution from an inner-valence orbital. Our experiment uses the ratio of H2O and D2O high harmonic yields to isolate the characteristic nuclear motion of the molecular ionic states. The nuclear motion initiated via ionization of the highest occupied molecular orbital (HOMO) is small and is expected to lead to similar harmonic yields for the two isotopes. In contrast, ionization of the second least bound orbital (HOMO-1) exhibits itself via a strong bending motion which creates a significant isotope effect. We elaborate on this interpretation by simulating strong field ionization and high harmonic generation from the water isotopes using the time-dependent Schr\"odinger equation. We expect that this isotope marking scheme for probing excited ionic states in strong field processes can be generalized to other molecules

    Crop moisture estimation over the southern Great Plains with dual polarization 1.66 centimeter passive microwave data from Nimbus 7

    Get PDF
    Moisture content of snow-free, unfrozen soil is inferred using passive microwave brightness temperatures from the scanning multichannel microwave radiometer (SMMR) on Nimbus-7. Investigation is restricted to the two polarizations of the 1.66 cm wavelength sensor. Passive microwave estimates of soil moisture are of two basic categories; those based upon soil emissivity and those based upon the polarization of soil emission. The two methods are compared and contrasted through the investigation of 54 potential functions of polarized brightness temperatures and, in some cases, ground-based temperature measurements. Of these indices, three are selected for the estimated emissivity, the difference between polarized brightness temperatures, and the normalized polarization difference. Each of these indices is about equally effective for monitoring soil moisture. Using an antecedent precipitation index (API) as ground control data, temporal and spatial analyses show that emissivity data consistently give slightly better soil moisture estimates than depolarization data. The difference, however, is not statistically significant. It is concluded that polarization data alone can provide estimates of soil moisture in areas where the emissivity cannot be inferred due to nonavailability of surface temperature data

    Evaluating the effects of climate change on US agricultural systems: sensitivity to regional impact and trade expansion scenarios

    Get PDF
    Agriculture is one of the sectors that is expected to be most significantly impacted by climate change. There has been considerable interest in assessing these impacts and many recent studies investigating agricultural impacts for individual countries and regions using an array of models. However, the great majority of existing studies explore impacts on a country or region of interest without explicitly accounting for impacts on the rest of the world. This approach can bias the results of impact assessments for agriculture given the importance of global trade in this sector. Due to potential impacts on relative competitiveness, international trade, global supply, and prices, the net impacts of climate change on the agricultural sector in each region depend not only on productivity impacts within that region, but on how climate change impacts agricultural productivity throughout the world. In this study, we apply a global model of agriculture and forestry to evaluate climate change impacts on US agriculture with and without accounting for climate change impacts in the rest of the world. In addition, we examine scenarios where trade is expanded to explore the implications for regional allocation of production, trade volumes, and prices. To our knowledge, this is one of the only attempts to explicitly quantify the relative importance of accounting for global climate change when conducting regional assessments of climate change impacts. The results of our analyses reveal substantial differences in estimated impacts on the US agricultural sector when accounting for global impacts vs. US-only impacts, particularly for commodities where the United States has a smaller share of global production. In addition, we find that freer trade can play an important role in helping to buffer regional productivity shocks
    • …
    corecore