9,773 research outputs found
Search for Stable Magnetohydrodynamic Equilibria in Barotropic Stars
It is now believed that magnetohydrodynamic equilibria can exist in stably
stratified stars due to the seminal works of Braithwaite & Spruit (2004) and
Braithwaite & Nordlund (2006). What is still not known is whether
magnetohydrodynamic equilibria can exist in a barotropic star, in which stable
stratification is not present. It has been conjectured by Reisenegger (2009)
that there will likely not exist any magnetohydrodynamical equilibria in
barotropic stars. We aim to test this claim by presenting preliminary MHD
simulations of barotropic stars using the three dimensional stagger code of
Nordlund & Galsgaard (1995).Comment: 4 pages, 2 figures, to appear in the proceedings of IAUS 302:
"Magnetic Fields Throughout Stellar Evolution
On Nori's Fundamental Group Scheme
We determine the quotient category which is the representation category of
the kernel of the homomorphism from Nori's fundamental group scheme to its
\'etale and local parts. Pierre Deligne pointed out an error in the first
version of this article. We profoundly thank him, in particular for sending us
his enlightning example reproduced in Remark 2.4 2).Comment: 29 page
Oscillation results for Sturm–Liouville problems with an indefinite weight function
AbstractWe prove oscillation results for the real eigenvalues of Sturm–Liouville problems with an indefinite weight function. An essential role is played by the signature of an eigenvalue, which is shown to be related to the signs of the corresponding leading coefficients of the Titchmarsh–Weyl m-function and of the Prüfer angle at this eigenvalue
Scattering theory for Klein-Gordon equations with non-positive energy
We study the scattering theory for charged Klein-Gordon equations:
\{{array}{l} (\p_{t}- \i v(x))^{2}\phi(t,x) \epsilon^{2}(x,
D_{x})\phi(t,x)=0,[2mm] \phi(0, x)= f_{0}, [2mm] \i^{-1} \p_{t}\phi(0, x)=
f_{1}, {array}. where: \epsilon^{2}(x, D_{x})= \sum_{1\leq j, k\leq
n}(\p_{x_{j}} \i b_{j}(x))A^{jk}(x)(\p_{x_{k}} \i b_{k}(x))+ m^{2}(x),
describing a Klein-Gordon field minimally coupled to an external
electromagnetic field described by the electric potential and magnetic
potential . The flow of the Klein-Gordon equation preserves the
energy: h[f, f]:= \int_{\rr^{n}}\bar{f}_{1}(x) f_{1}(x)+
\bar{f}_{0}(x)\epsilon^{2}(x, D_{x})f_{0}(x) - \bar{f}_{0}(x) v^{2}(x) f_{0}(x)
\d x. We consider the situation when the energy is not positive. In this
case the flow cannot be written as a unitary group on a Hilbert space, and the
Klein-Gordon equation may have complex eigenfrequencies. Using the theory of
definitizable operators on Krein spaces and time-dependent methods, we prove
the existence and completeness of wave operators, both in the short- and
long-range cases. The range of the wave operators are characterized in terms of
the spectral theory of the generator, as in the usual Hilbert space case
Simply connected projective manifolds in characteristic have no nontrivial stratified bundles
We show that simply connected projective manifolds in characteristic
have no nontrivial stratified bundles. This gives a positive answer to a
conjecture by D. Gieseker. The proof uses Hrushovski's theorem on periodic
points.Comment: 16 pages. Revised version contains a more general theorem on torsion
points on moduli, together with an illustration in rank 2 due to M. Raynaud.
Reference added. Last version has some typos corrected. Appears in
Invent.math
Scanning electron microscopy of Rydberg-excited Bose-Einstein condensates
We report on the realization of high resolution electron microscopy of
Rydberg-excited ultracold atomic samples. The implementation of an ultraviolet
laser system allows us to excite the atom, with a single-photon transition, to
Rydberg states. By using the electron microscopy technique during the Rydberg
excitation of the atoms, we observe a giant enhancement in the production of
ions. This is due to -changing collisions, which broaden the Rydberg level
and therefore increase the excitation rate of Rydberg atoms. Our results pave
the way for the high resolution spatial detection of Rydberg atoms in an atomic
sample
Dynamical density functional theory for the dewetting of evaporating thin films of nanoparticle suspensions exhibiting pattern formation
Recent experiments have shown that the striking structure formation in
dewetting films of evaporating colloidal nanoparticle suspensions occurs in an
ultrathin `postcursor' layer that is left behind by a mesoscopic dewetting
front. Various phase change and transport processes occur in the postcursor
layer, that may lead to nanoparticle deposits in the form of labyrinthine,
network or strongly branched `finger' structures. We develop a versatile
dynamical density functional theory to model this system which captures all
these structures and may be employed to investigate the influence of
evaporation/condensation, nanoparticle transport and solute transport in a
differentiated way. We highlight, in particular, the influence of the subtle
interplay of decomposition in the layer and contact line motion on the observed
particle-induced transverse instability of the dewetting front.Comment: 5 pages, 5 figure
Effect of Local Inhomogeneity on Nucleation; Case of Charge Density Wave Depinning
The spatial inhomogeneities are expected to affect nucleation process in an
essential way. These effects are studied theoretically by considering the case
of the depinning of the charge density wave as a typical example. The threshold
field of the depinning of the one-dimensional commensurate charge density wave
with one impurity has been examined classically based on the phase Hamiltonian
at absolute zero. It is found that the threshold field is lowered by a finite
amount compared to that in the absence of an impurity.Comment: pages 12, LaTeX, 9 figures, uses jpsj.sty, submitted to J. Phys. Soc.
Jp
Ionized gas at the edge of the Central Molecular Zone
To determine the properties of the ionized gas at the edge of the CMZ near
Sgr E we observed a small portion of the edge of the CMZ near Sgr E with
spectrally resolved [C II] 158 micron and [N II] 205 micron fine structure
lines at six positions with the GREAT instrument on SOFIA and in [C II] using
Herschel HIFI on-the-fly strip maps. We use the [N II] spectra along with a
radiative transfer model to calculate the electron density of the gas and the
[C II] maps to illuminate the morphology of the ionized gas and model the
column density of CO-dark H2. We detect two [C II] and [N II] velocity
components, one along the line of sight to a CO molecular cloud at -207 km/s
associated with Sgr E and the other at -174 km/s outside the edge of another CO
cloud. From the [N II] emission we find that the average electron density is in
the range of about 5 to 25 cm{-3} for these features. This electron density is
much higher than that of the warm ionized medium in the disk. The column
density of the CO-dark H layer in the -207 km/s cloud is about 1-2X10{21}
cm{-2} in agreement with theoretical models. The CMZ extends further out in
Galactic radius by 7 to 14 pc in ionized gas than it does in molecular gas
traced by CO. The edge of the CMZ likely contains dense hot ionized gas
surrounding the neutral molecular material. The high fractional abundance of N+
and high electron density require an intense EUV field with a photon flux of
order 1e6 to 1e7 photons cm{-2} s{-1}, and/or efficient proton charge exchange
with nitrogen, at temperatures of order 1e4 K, and/or a large flux of X-rays.
Sgr E is a region of massive star formation which are a potential sources of
the EUV radiation that can ionize the gas. In addition X-ray sources and the
diffuse X-ray emission in the CMZ are candidates for ionizing nitrogen.Comment: 12 pages, 9 figure
- …