1,564 research outputs found

    Theoretical study of O adlayers on Ru(0001)

    Full text link
    Recent experiments performed at high pressures indicate that ruthenium can support unusually high concentrations of oxygen at the surface. To investigate the structure and stability of high coverage oxygen structures, we performed density functional theory calculations, within the generalized gradient approximation, for O adlayers on Ru(0001) from low coverage up to a full monolayer. We achieve quantitative agreement with previous low energy electron diffraction intensity analyses for the (2x2) and (2x1) phases and predict that an O adlayer with a (1x1) periodicity and coverage of 1 monolayer can form on Ru(0001), where the O adatoms occupy hcp-hollow sites.Comment: RevTeX, 6 pages, 4 figure

    Eulerian simulation of the fluid dynamics of helicopter brownout

    Get PDF
    A computational model is presented that can be used to simulate the development of the dust cloud that can be entrained into the air when a helicopter is operated close to the ground in desert or dusty conditions. The physics of this problem, and the associated pathological condition known as ‘brownout’ where the pilot loses situational awareness as a result of his vision being occluded by dust suspended in the flow around the helicopter, is acknowledged to be very complex. The approach advocated here involves an approximation to the full dynamics of the coupled particulate-air system. Away from the ground, the model assumes that the suspended particles remain in near equilibrium under the action of aerodynamic forces. Close to the ground, this model is replaced by an algebraic sublayer model for the saltation and entrainment process. The origin of the model in the statistical mechanics of a distribution of particles governed by aerodynamic forces allows the validity of the method to be evaluated in context by comparing the physical properties of the suspended particulates to the local properties of the flow field surrounding the helicopter. The model applies in the Eulerian frame of reference of most conventional Computational Fluid Dynamics codes and has been coupled with Brown’s Vorticity Transport Model. Verification of the predictions of the coupled model against experimental data for particulate entrainment and transport in the flow around a model rotor are encouraging. An application of the coupled model to analyzing the differences in the geometry and extent of the dust clouds that are produced by single main rotor and tandem-rotor configurations as they decelerate to land has shown that the location of the ground vortex and the size of any regions of recirculatory flow, should they exist, play a primary role in governing the extent of the dust cloud that is created by the helicopter

    Synthetic Aβ peptides acquire prion-like properties in the brain

    Get PDF
    In transmission studies with Alzheimer's disease (AD) animal models, the formation of Aβ plaques is proposed to be initiated by seeding the inoculated amyloid β (Aβ) peptides in the brain. Like the misfolded scrapie prion protein (PrP(Sc)) in prion diseases, Aβ in AD shows a certain degree of resistance to protease digestion while the biochemical basis for protease resistance of Aβ remains poorly understood. Using in vitro assays, histoblotting, and electron microscopy, we characterize the biochemical and morphological features of synthetic Aβ peptides and Aβ isolated from AD brain tissues. Consistent with previous observations, monomeric and oligomeric Aβ species extracted from AD brains are insoluble in detergent buffers and resistant to digestions with proteinase K (PK). Histoblotting of AD brain tissue sections exhibits an increased Aβ immunoreactivity after digestion with PK. In contrast, synthetic Aβ40 and Aβ42 are soluble in detergent buffers and fully digested by PK. Electron microscopy of Aβ40 and Aβ42 synthetic peptides shows that both species of Aβ form mature fibrils. Those generated from Aβ40 are longer but less numerous than those made of Aβ42. When spiked into human brain homogenates, both Aβ40 and Aβ42 acquire insolubility in detergent and resistance to PK. Our study favors the hypothesis that the human brain may contain cofactor(s) that confers the synthetic Aβ peptides PrP(Sc)-like physicochemical properties

    Strain-Driven Mn-Reorganization in Overlithiated LixMn2O4 Epitaxial Thin-Film Electrodes

    Get PDF
    Lithium manganate LixMn2O4 (LMO) is a lithium ion cathode that suffers from the widely observed but poorly understood phenomenon of capacity loss due to Mn dissolution during electrochemical cycling. Here, operando X-ray reflectivity (low- and high-angle) is used to study the structure and morphology of epitaxial LMO (111) thin film cathodes undergoing lithium insertion and extraction to understand the inter-relationships between biaxial strain and Mn-dissolution. The initially strain-relieved LiMn2O4 films generate in-plane tensile and compressive strains for delithiated (x 1) charge states, respectively. The results reveal reversible Li insertion into LMO with no measurable Mn-loss for 0 1) reveals Mn loss from LMO along with dramatic changes in the intensity of the (111) Bragg peak that cannot be explained by Li stoichiometry. These results reveal a partially reversible site reorganization of Mn ions within the LMO film that is not seen in bulk reactions and indicates a transition in Mn-layer stoichiometry from 3:1 to 2:2 in alternating cation planes. Density functional theory calculations confirm that compressive strains (at x = 2) stabilize LMO structures with 2:2 Mn site distributions, therefore providing new insights into the role of lattice strain in the stability of LMO

    Thermochemistry of Alane Complexes for Hydrogen Storage: A Theoretical and Experimental Comparison

    Full text link
    Knowledge of the relative stabilities of alane (AlH3) complexes with electron donors is essential for identifying hydrogen storage materials for vehicular applications that can be regenerated by off-board methods; however, almost no thermodynamic data are available to make this assessment. To fill this gap, we employed the G4(MP2) method to determine heats of formation, entropies, and Gibbs free energies of formation for thirty-eight alane complexes with NH3-nRn (R = Me, Et; n = 0-3), pyridine, pyrazine, triethylenediamine (TEDA), quinuclidine, OH2-nRn (R = Me, Et; n = 0-2), dioxane, and tetrahydrofuran (THF). Monomer, bis, and selected dimer complex geometries were considered. Using these data, we computed the thermodynamics of the key formation and dehydrogenation reactions that would occur during hydrogen delivery and alane regeneration, from which trends in complex stability were identified. These predictions were tested by synthesizing six amine-alane complexes involving trimethylamine, triethylamine, dimethylethylamine, TEDA, quinuclidine, and hexamine, and obtaining upper limits of delta G for their formation from metallic aluminum. Combining these computational and experimental results, we establish a criterion for complex stability relevant to hydrogen storage that can be used to assess potential ligands prior to attempting synthesis of the alane complex. Based on this, we conclude that only a subset of the tertiary amine complexes considered and none of the ether complexes can be successfully formed by direct reaction with aluminum and regenerated in an alane-based hydrogen storage system.Comment: Accepted by the Journal of Physical Chemistry

    Electron affinities of the first- and second- row atoms: benchmark ab initio and density functional calculations

    Full text link
    A benchmark ab initio and density functional (DFT) study has been carried out on the electron affinities of the first- and second-row atoms. The ab initio study involves basis sets of spdfghspdfgh and spdfghispdfghi quality, extrapolations to the 1-particle basis set limit, and a combination of the CCSD(T), CCSDT, and full CI electron correlation methods. Scalar relativistic and spin-orbit coupling effects were taken into account. On average, the best ab initio results agree to better than 0.001 eV with the most recent experimental results. Correcting for imperfections in the CCSD(T) method improves the mean absolute error by an order of magnitude, while for accurate results on the second-row atoms inclusion of relativistic corrections is essential. The latter are significantly overestimated at the SCF level; for accurate spin-orbit splitting constants of second-row atoms inclusion of (2s,2p) correlation is essential. In the DFT calculations it is found that results for the 1st-row atoms are very sensitive to the exchange functional, while those for second-row atoms are rather more sensitive to the correlation functional. While the LYP correlation functional works best for first-row atoms, its PW91 counterpart appears to be preferable for second-row atoms. Among ``pure DFT'' (nonhybrid) functionals, G96PW91 (Gill 1996 exchange combined with Perdew-Wang 1991 correlation) puts in the best overall performance. The best results overall are obtained with the 1-parameter hybrid modified Perdew-Wang (mPW1) exchange functionals of Adamo and Barone [J. Chem. Phys. {\bf 108}, 664 (1998)], with mPW1LYP yielding the best results for first-row, and mPW1PW91 for second-row atoms. Indications exist that a hybrid of the type aa mPW1LYP + (1a)(1-a) mPW1PW91 yields better results than either of the constituent functionals.Comment: Phys. Rev. A, in press (revised version, review of issues concerning DFT and electron affinities added

    Tomographic Separation of Composite Spectra. VIII. The Physical Properties of the Massive Compact Binary in the Triple Star System HD 36486 (delta Orionis A)

    Full text link
    Double-lined spectroscopic orbital elements have recently been found for the central binary in the massive triple, delta Orionis A based on radial velocities from cross-correlation techniques applied to IUE high dispersion spectra and He I 6678 spectra obtained at Kitt Peak. The primary and secondary velocity amplitudes were found to be 94.9 +/- 0.6 km/s and 186 +/- 9 km/s respectively. Tomographic reconstructions of the primary and secondary stars' spectra confirm the O9.5 II classification of the primary and indicate a B0.5 III type for the secondary. The widths of the UV cross-correlation functions are used to estimate the projected rotational velocities, Vsin i = 157 +/- 6 km/s and 138 +/- 16 km/s for the primary and secondary, respectively implying that both stars rotate faster than their orbital motion. We used the spectroscopic results to make a constrained fit of the Hipparcos light curve of this eclipsing binary, and the model fits limit the inclination to the range between 67 and 77 degrees. The i = 67 degrees solution, which corresponds to a near Roche-filling configuration, results in a primary mass of 11.2 solar masses and a secondary mass of 5.6 solar masses, both of which are substantially below the expected masses for stars of their luminosity. This binary may have experienced a mass ratio reversal caused by Case A Roche lobe overflow, or the system may have suffered extensive mass loss through a binary interaction, perhaps during a common envelope phase, in which most of the primary's mass was lost from the system rather than transferred to the secondary.Comment: 27 pages, 15 figures in press, the Astrophysical Journal, February 1, 200

    Benchmark thermochemistry of the C_nH_{2n+2} alkane isomers (n=2--8) and performance of DFT and composite ab initio methods for dispersion-driven isomeric equilibria

    Full text link
    The thermochemistry of linear and branched alkanes with up to eight carbons has been reexamined by means of W4, W3.2lite and W1h theories. `Quasi-W4' atomization energies have been obtained via isodesmic and hypohomodesmotic reactions. Our best atomization energies at 0 K (in kcal/mol) are: 1220.04 n-butane, 1497.01 n-pentane, 1774.15 n-hexane, 2051.17 n-heptane, 2328.30 n-octane, 1221.73 isobutane, 1498.27 isopentane, 1501.01 neopentane, 1775.22 isohexane, 1774.61 3-methylpentane, 1775.67 diisopropyl, 1777.27 neohexane, 2052.43 isoheptane, 2054.41 neoheptane, 2330.67 isooctane, and 2330.81 hexamethylethane. Our best estimates for ΔHf,298K\Delta H^\circ_{f,298K} are: -30.00 n-butane, -34.84 n-pentane, -39.84 n-hexane, -44.74 n-heptane, -49.71 n-octane, -32.01 isobutane, -36.49 isopentane, -39.69 neopentane, -41.42 isohexane, -40.72 3-methylpentane, -42.08 diisopropyl, -43.77 neohexane, -46.43 isoheptane, -48.84 neoheptane, -53.29 isooctane, and -53.68 hexamethylethane. These are in excellent agreement (typically better than 1 kJ/mol) with the experimental heats of formation at 298 K obtained from the CCCBDB and/or NIST Chemistry WebBook databases. However, at 0 K a large discrepancy between theory and experiment (1.1 kcal/mol) is observed for only neopentane. This deviation is mainly due to the erroneous heat content function for neopentane used in calculating the 0 K CCCBDB value. The thermochemistry of these systems, especially of the larger alkanes, is an extremely difficult test for density functional methods. A posteriori corrections for dispersion are essential. Particularly for the atomization energies, the B2GP-PLYP and B2K-PLYP double-hybrids, and the PW6B95 hybrid-meta GGA clearly outperform other DFT functionals.Comment: (J. Phys. Chem. A, in press

    Ab initio van der Waals interactions in simulations of water alter structure from mainly tetrahedral to high-density-like

    Get PDF
    The structure of liquid water at ambient conditions is studied in ab initio molecular dynamics simulations using van der Waals (vdW) density-functional theory, i.e. using the new exchange-correlation functionals optPBE-vdW and vdW-DF2. Inclusion of the more isotropic vdW interactions counteracts highly directional hydrogen-bonds, which are enhanced by standard functionals. This brings about a softening of the microscopic structure of water, as seen from the broadening of angular distribution functions and, in particular, from the much lower and broader first peak in the oxygen-oxygen pair-correlation function (PCF), indicating loss of structure in the outer solvation shells. In combination with softer non-local correlation terms, as in the new parameterization of vdW-DF, inclusion of vdW interactions is shown to shift the balance of resulting structures from open tetrahedral to more close-packed. The resulting O-O PCF shows some resemblance with experiment for high-density water (A. K. Soper and M. A. Ricci, Phys. Rev. Lett., 84:2881, 2000), but not directly with experiment for ambient water. However, an O-O PCF consisting of a linear combination of 70% from vdW-DF2 and 30% from experiment on low-density liquid water reproduces near-quantitatively the experimental O-O PCF for ambient water, indicating consistency with a two-liquid model with fluctuations between high- and low-density regions

    Surface reconstruction induced geometries of Si clusters

    Full text link
    We discuss a generalization of the surface reconstruction arguments for the structure of intermediate size Si clusters, which leads to model geometries for the sizes 33, 39 (two isomers), 45 (two isomers), 49 (two isomers), 57 and 61 (two isomers). The common feature in all these models is a structure that closely resembles the most stable reconstruction of Si surfaces, surrounding a core of bulk-like tetrahedrally bonded atoms. We investigate the energetics and the electronic structure of these models through first-principles density functional theory calculations. These models may be useful in understanding experimental results on the reactivity of Si clusters and their shape as inferred from mobility measurements.Comment: 9 figures (available from the author upon request) Submitted to Phys. Rev.
    corecore