687 research outputs found

    Do Quarks Obey D-Brane Dynamics?

    Get PDF
    The potential between two D0-branes at rest is calculated to be a linear. Also the potential between two fast decaying D0-branes is found in agreement with phenomenological heavy-quark potentials.Comment: 7 pages, no figures, LaTe

    Optic nerve crush induces spatial and temporal gene expression patterns in retina and optic nerve of BALB/cJ mice

    Get PDF
    BACKGROUND: Central nervous system (CNS) trauma and neurodegenerative disorders trigger a cascade of cellular and molecular events resulting in neuronal apoptosis and regenerative failure. The pathogenic mechanisms and gene expression changes associated with these detrimental events can be effectively studied using a rodent optic nerve crush (ONC) model. The purpose of this study was to use a mouse ONC model to: (a) evaluate changes in retina and optic nerve (ON) gene expression, (b) identify neurodegenerative pathogenic pathways and (c) discover potential new therapeutic targets. RESULTS: Only 54% of total neurons survived in the ganglion cell layer (GCL) 28 days post crush. Using Bayesian Estimation of Temporal Regulation (BETR) gene expression analysis, we identified significantly altered expression of 1,723 and 2,110 genes in the retina and ON, respectively. Meta-analysis of altered gene expression (≥1.5, ≤-1.5, p < 0.05) using Partek and DAVID demonstrated 28 up and 20 down-regulated retinal gene clusters and 57 up and 41 down-regulated optic nerve clusters. Regulated gene clusters included regenerative change, synaptic plasticity, axonogenesis, neuron projection, and neuron differentiation. Expression of selected genes (Vsnl1, Syt1, Synpr and Nrn1) from retinal and ON neuronal clusters were quantitatively and qualitatively examined for their relation to axonal neurodegeneration by immunohistochemistry and qRT-PCR. CONCLUSION: A number of detrimental gene expression changes occur that contribute to trauma-induced neurodegeneration after injury to ON axons. Nrn1 (synaptic plasticity gene), Synpr and Syt1 (synaptic vesicle fusion genes), and Vsnl1 (neuron differentiation associated gene) were a few of the potentially unique genes identified that were down-regulated spatially and temporally in our rodent ONC model. Bioinformatic meta-analysis identified significant tissue-specific and time-dependent gene clusters associated with regenerative changes, synaptic plasticity, axonogenesis, neuron projection, and neuron differentiation. These ONC induced neuronal loss and regenerative failure associated clusters can be extrapolated to changes occurring in other forms of CNS trauma or in clinical neurodegenerative pathological settings. In conclusion, this study identified potential therapeutic targets to address two key mechanisms of CNS trauma and neurodegeneration: neuronal loss and regenerative failure

    Global structure of exact cosmological solutions in the brane world

    Full text link
    We find the explicit coordinate transformation which links two exact cosmological solutions of the brane world which have been recently discovered. This means that both solutions are exactly the same with each other. One of two solutions is described by the motion of a domain wall in the well-known 5-dimensional Schwarzshild-AdS spacetime. Hence, we can easily understand the region covered by the coordinate used by another solution.Comment: Latex, 9 pages including 5 figures; references add, accepted for publication in Physical Review

    X-ray emission during the muonic cascade in hydrogen

    Get PDF
    We report our investigations of X rays emitted during the muonic cascade in hydrogen employing charge coupled devices as X-ray detectors. The density dependence of the relative X-ray yields for the muonic hydrogen lines (K_alpha, K_beta, K_gamma) has been measured at densities between 0.00115 and 0.97 of liquid hydrogen density. In this density region collisional processes dominate the cascade down to low energy levels. A comparison with recent calculations is given in order to demonstrate the influence of Coulomb deexcitation.Comment: 5 pages, Tex, 4 figures, submitted to Physical Review Letter

    Solutions to the cosmological constant problems

    Get PDF
    We critically review several recent approaches to solving the two cosmological constant problems. The "old" problem is the discrepancy between the observed value of Λ\Lambda and the large values suggested by particle physics models. The second problem is the "time coincidence" between the epoch of galaxy formation tGt_G and the epoch of Λ\Lambda-domination t_\L. It is conceivable that the "old" problem can be resolved by fundamental physics alone, but we argue that in order to explain the "time coincidence" we must account for anthropic selection effects. Our main focus here is on the discrete-Λ\Lambda models in which Λ\Lambda can change through nucleation of branes. We consider the cosmology of this type of models in the context of inflation and discuss the observational constraints on the model parameters. The issue of multiple brane nucleation raised by Feng {\it et. al.} is discussed in some detail. We also review continuous-\L models in which the role of the cosmological constant is played by a slowly varying potential of a scalar field. We find that both continuous and discrete models can in principle solve both cosmological constant problems, although the required values of the parameters do not appear very natural. M-theory-motivated brane models, in which the brane tension is determined by the brane coupling to the four-form field, do not seem to be viable, except perhaps in a very tight corner of the parameter space. Finally, we point out that the time coincidence can also be explained in models where Λ\Lambda is fixed, but the primordial density contrast Q=δρ/ρQ=\delta\rho/\rho is treated as a random variable.Comment: 30 pages, 3 figures, two notes adde

    Finding Z' bosons coupled preferentially to the third family at CERN LEP and the Fermilab Tevatron

    Get PDF
    Z' bosons that couple preferentially to the third generation fermions can arise in models with extended weak (SU(2)xSU(2)) or hypercharge (U(1)xU(1)) gauge groups. We show that existing limits on quark-lepton compositeness set by the LEP and Tevatron experiments translate into lower bounds of order a few hundred GeV on the masses of these Z' bosons. Resonances of this mass can be directly produced at the Tevatron. Accordingly, we explore in detail the limits that can be set at Run II using the process p pbar -> Z' -> tau tau -> e mu. We also comment on the possibility of using hadronically-decaying taus to improve the limits.Comment: LaTeX2e, 24 pages (including title page), 13 figures; version 2: corrected typographical errors and bad figure placement; version 3: added references and updated introduction; version 4: changes to compensate for old latex version on arXiv server; version 5: additional references, and embedded fonts in eps files for PRD; version 6: corrected some minor typos to address PRD referee's comment

    Analysis of Oscillator Neural Networks for Sparsely Coded Phase Patterns

    Full text link
    We study a simple extended model of oscillator neural networks capable of storing sparsely coded phase patterns, in which information is encoded both in the mean firing rate and in the timing of spikes. Applying the methods of statistical neurodynamics to our model, we theoretically investigate the model's associative memory capability by evaluating its maximum storage capacities and deriving its basins of attraction. It is shown that, as in the Hopfield model, the storage capacity diverges as the activity level decreases. We consider various practically and theoretically important cases. For example, it is revealed that a dynamically adjusted threshold mechanism enhances the retrieval ability of the associative memory. It is also found that, under suitable conditions, the network can recall patterns even in the case that patterns with different activity levels are stored at the same time. In addition, we examine the robustness with respect to damage of the synaptic connections. The validity of these theoretical results is confirmed by reasonable agreement with numerical simulations.Comment: 23 pages, 11 figure

    Proposal for an experiment to measure the Hausdorff dimension of quantum mechanical trajectories

    Get PDF
    We make a proposal for a Gedanken experiment, based on the Aharonov-Bohm effect, how to measure in principle the zig-zagness of the trajectory of propagation (abberation from its classical trajectory) of a massive particle in quantum mechanics. Experiment I is conceived to show that contributions from quantum paths abberating from the classical trajectory are directly observable. Experiment II is conceived to measure average length, scaling behavior and critical exponent (Hausdorff dimension) of quantum mechanical paths.Comment: 35 pages, LaTeX + 27 figures, ps and gi
    corecore