204 research outputs found
Prefix-Projection Global Constraint for Sequential Pattern Mining
Sequential pattern mining under constraints is a challenging data mining
task. Many efficient ad hoc methods have been developed for mining sequential
patterns, but they are all suffering from a lack of genericity. Recent works
have investigated Constraint Programming (CP) methods, but they are not still
effective because of their encoding. In this paper, we propose a global
constraint based on the projected databases principle which remedies to this
drawback. Experiments show that our approach clearly outperforms CP approaches
and competes well with ad hoc methods on large datasets
Constraint Programming for Multi-criteria Conceptual Clustering
International audienceA conceptual clustering is a set of formal concepts (i.e., closed itemsets) that defines a partition of a set of transactions. Finding a conceptual clustering is an N P-complete problem for which Constraint Programming (CP) and Integer Linear Programming (ILP) approaches have been recently proposed. We introduce new CP models to solve this problem: a pure CP model that uses set constraints, and an hybrid model that uses a data mining tool to extract formal concepts in a preprocessing step and then uses CP to select a subset of formal concepts that defines a partition. We compare our new models with recent CP and ILP approaches on classical machine learning instances. We also introduce a new set of instances coming from a real application case, which aims at extracting setting concepts from an Enterprise Resource Planning (ERP) software. We consider two classic criteria to optimize, i.e., the frequency and the size. We show that these criteria lead to extreme solutions with either very few small formal concepts or many large formal concepts, and that compromise clusterings may be obtained by computing the Pareto front of non dominated clusterings
- …