158 research outputs found

    On the fluctuations of jamming coverage upon random sequential adsorption on homogeneous and heterogeneous media

    Full text link
    The fluctuations of the jamming coverage upon Random Sequential Adsorption (RSA) are studied using both analytical and numerical techniques. Our main result shows that these fluctuations (characterized by σθJ\sigma_{\theta_J}) decay with the lattice size according to the power-law σθJL1/ν\sigma_{\theta_J} \propto L^{-1/ \nu}. The exponent ν\nu depends on the dimensionality DD of the substrate and the fractal dimension of the set where the RSA process actually takes place (dfd_f) according to ν=2/(2Ddf)\nu = 2 / (2D - d_f).This theoretical result is confirmed by means of extensive numerical simulations applied to the RSA of dimers on homogeneous and stochastic fractal substrates. Furthermore, our predictions are in excellent agreement with different previous numerical results. It is also shown that, studying correlated stochastic processes, one can define various fluctuating quantities designed to capture either the underlying physics of individual processes or that of the whole system. So, subtle differences in the definitions may lead to dramatically different physical interpretations of the results. Here, this statement is demonstrated for the case of RSA of dimers on binary alloys.Comment: 20 pages, 8 figure

    mRNA Display Selection of an Optimized MDM2-Binding Peptide That Potently Inhibits MDM2-p53 Interaction

    Get PDF
    p53 is a tumor suppressor protein that prevents tumorigenesis through cell cycle arrest or apoptosis of cells in response to cellular stress such as DNA damage. Because the oncoprotein MDM2 interacts with p53 and inhibits its activity, MDM2-p53 interaction has been a major target for the development of anticancer drugs. While previous studies have used phage display to identify peptides (such as DI) that inhibit the MDM2-p53 interaction, these peptides were not sufficiently optimized because the size of the phage-displayed random peptide libraries did not cover all of the possible sequences. In this study, we performed selection of MDM2-binding peptides from large random peptide libraries in two stages using mRNA display. We identified an optimal peptide named MIP that inhibited the MDM2-p53 and MDMX-p53 interactions 29- and 13-fold more effectively than DI, respectively. Expression of MIP fused to the thioredoxin scaffold protein in living cells by adenovirus caused stabilization of p53 through its interaction with MDM2, resulting in activation of the p53 pathway. Furthermore, expression of MIP also inhibited tumor cell proliferation in a p53-dependent manner more potently than DI. These results show that two-stage, mRNA-displayed peptide selection is useful for the rapid identification of potent peptides that target oncoproteins

    Enabling large-scale design, synthesis and validation of small molecule protein-protein antagonists

    Get PDF
    Although there is no shortage of potential drug targets, there are only a handful known low-molecular-weight inhibitors of protein-protein interactions (PPIs). One problem is that current efforts are dominated by low-yield high-throughput screening, whose rigid framework is not suitable for the diverse chemotypes present in PPIs. Here, we developed a novel pharmacophore-based interactive screening technology that builds on the role anchor residues, or deeply buried hot spots, have in PPIs, and redesigns these entry points with anchor-biased virtual multicomponent reactions, delivering tens of millions of readily synthesizable novel compounds. Application of this approach to the MDM2/p53 cancer target led to high hit rates, resulting in a large and diverse set of confirmed inhibitors, and co-crystal structures validate the designed compounds. Our unique open-access technology promises to expand chemical space and the exploration of the human interactome by leveraging in-house small-scale assays and user-friendly chemistry to rationally design ligands for PPIs with known structure. © 2012 Koes et al

    Three-Dimensional Stochastic Off-Lattice Model of Binding Chemistry in Crowded Environments

    Get PDF
    Molecular crowding is one of the characteristic features of the intracellular environment, defined by a dense mixture of varying kinds of proteins and other molecules. Interaction with these molecules significantly alters the rates and equilibria of chemical reactions in the crowded environment. Numerous fundamental activities of a living cell are strongly influenced by the crowding effect, such as protein folding, protein assembly and disassembly, enzyme activity, and signal transduction. Quantitatively predicting how crowding will affect any particular process is, however, a very challenging problem because many physical and chemical parameters act synergistically in ways that defy easy analysis. To build a more realistic model for this problem, we extend a prior stochastic off-lattice model from two-dimensional (2D) to three-dimensional (3D) space and examine how the 3D results compare to those found in 2D. We show that both models exhibit qualitatively similar crowding effects and similar parameter dependence, particularly with respect to a set of parameters previously shown to act linearly on total reaction equilibrium. There are quantitative differences between 2D and 3D models, although with a generally gradual nonlinear interpolation as a system is extended from 2D to 3D. However, the additional freedom of movement allowed to particles as thickness of the simulation box increases can produce significant quantitative change as a system moves from 2D to 3D. Simulation results over broader parameter ranges further show that the impact of molecular crowding is highly dependent on the specific reaction system examined

    Congenital hypothyroidism

    Get PDF
    Congenital hypothyroidism (CH) occurs in approximately 1:2,000 to 1:4,000 newborns. The clinical manifestations are often subtle or not present at birth. This likely is due to trans-placental passage of some maternal thyroid hormone, while many infants have some thyroid production of their own. Common symptoms include decreased activity and increased sleep, feeding difficulty, constipation, and prolonged jaundice. On examination, common signs include myxedematous facies, large fontanels, macroglossia, a distended abdomen with umbilical hernia, and hypotonia. CH is classified into permanent and transient forms, which in turn can be divided into primary, secondary, or peripheral etiologies. Thyroid dysgenesis accounts for 85% of permanent, primary CH, while inborn errors of thyroid hormone biosynthesis (dyshormonogeneses) account for 10-15% of cases. Secondary or central CH may occur with isolated TSH deficiency, but more commonly it is associated with congenital hypopitiutarism. Transient CH most commonly occurs in preterm infants born in areas of endemic iodine deficiency. In countries with newborn screening programs in place, infants with CH are diagnosed after detection by screening tests. The diagnosis should be confirmed by finding an elevated serum TSH and low T4 or free T4 level. Other diagnostic tests, such as thyroid radionuclide uptake and scan, thyroid sonography, or serum thyroglobulin determination may help pinpoint the underlying etiology, although treatment may be started without these tests. Levothyroxine is the treatment of choice; the recommended starting dose is 10 to 15 mcg/kg/day. The immediate goals of treatment are to rapidly raise the serum T4 above 130 nmol/L (10 ug/dL) and normalize serum TSH levels. Frequent laboratory monitoring in infancy is essential to ensure optimal neurocognitive outcome. Serum TSH and free T4 should be measured every 1-2 months in the first 6 months of life and every 3-4 months thereafter. In general, the prognosis of infants detected by screening and started on treatment early is excellent, with IQs similar to sibling or classmate controls. Studies show that a lower neurocognitive outcome may occur in those infants started at a later age (> 30 days of age), on lower l-thyroxine doses than currently recommended, and in those infants with more severe hypothyroidism

    Small molecules, big targets: drug discovery faces the protein-protein interaction challenge.

    Get PDF
    Protein-protein interactions (PPIs) are of pivotal importance in the regulation of biological systems and are consequently implicated in the development of disease states. Recent work has begun to show that, with the right tools, certain classes of PPI can yield to the efforts of medicinal chemists to develop inhibitors, and the first PPI inhibitors have reached clinical development. In this Review, we describe the research leading to these breakthroughs and highlight the existence of groups of structurally related PPIs within the PPI target class. For each of these groups, we use examples of successful discovery efforts to illustrate the research strategies that have proved most useful.JS, DES and ARB thank the Wellcome Trust for funding.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nrd.2016.2
    corecore