33 research outputs found

    Robust time-varying multivariate coherence estimation: Application to electroencephalogram recordings during general anesthesia

    Get PDF
    Coherence analysis characterizes frequency-dependent covariance between signals, and is useful for multivariate oscillatory data often encountered in neuroscience. The global coherence provides a summary of coherent behavior in high-dimensional multivariate data by quantifying the concentration of variance in the first mode of an eigenvalue decomposition of the cross-spectral matrix. Practical application of this useful method is sensitive to noise, and can confound coherent activity in disparate neural populations or spatial locations that have a similar frequency structure. In this paper we describe two methodological enhancements to the global coherence procedure that increase robustness of the technique to noise, and that allow characterization of how power within specific coherent modes change through time.National Institutes of Health (U.S.) (Grant DP2-OD006454)National Institutes of Health (U.S.) (Grant K25-NS057580)National Institutes of Health (U.S.) (Grant DP1-OD003646)National Institutes of Health (U.S.) (Grant R01-EB006385)National Institutes of Health (U.S.) (Grant R01-MH071847

    Bayesian analysis of trinomial data in behavioral experiments and its application to human studies of general anesthesia

    Get PDF
    Accurate quantification of loss of response to external stimuli is essential for understanding the mechanisms of loss of consciousness under general anesthesia. We present a new approach for quantifying three possible outcomes that are encountered in behavioral experiments during general anesthesia: correct responses, incorrect responses and no response. We use a state-space model with two state variables representing a probability of response and a conditional probability of correct response. We show applications of this approach to an example of responses to auditory stimuli at varying levels of propofol anesthesia ranging from light sedation to deep anesthesia in human subjects. The posterior probability densities of model parameters and the response probability are computed within a Bayesian framework using Markov Chain Monte Carlo methods.National Institutes of Health (U.S.) (Grant DP2-OD006454)National Institutes of Health (U.S.) (Grant K25-NS057580)National Institutes of Health (U.S.) (Grant DP1-OD003646)National Institutes of Health (U.S.) (Grant R01-EB006385)National Institutes of Health (U.S.) (Grant R01-MH071847

    The use of airborne laser scanning to develop a pixel-based stratification for a verified carbon offset project

    Get PDF
    Background The voluntary carbon market is a new and growing market that is increasingly important to consider in managing forestland. Monitoring, reporting, and verifying carbon stocks and fluxes at a project level is the single largest direct cost of a forest carbon offset project. There are now many methods for estimating forest stocks with high accuracy that use both Airborne Laser Scanning (ALS) and high-resolution optical remote sensing data. However, many of these methods are not appropriate for use under existing carbon offset standards and most have not been field tested. Results This paper presents a pixel-based forest stratification method that uses both ALS and optical remote sensing data to optimally partition the variability across an ~10,000 ha forest ownership in Mendocino County, CA, USA. This new stratification approach improved the accuracy of the forest inventory, reduced the cost of field-based inventory, and provides a powerful tool for future management planning. This approach also details a method of determining the optimum pixel size to best partition a forest. Conclusions The use of ALS and optical remote sensing data can help reduce the cost of field inventory and can help to locate areas that need the most intensive inventory effort. This pixel-based stratification method may provide a cost-effective approach to reducing inventory costs over larger areas when the remote sensing data acquisition costs can be kept low on a per acre basis

    A road map for designing and implementing a biological monitoring program

    Get PDF
    Designing and implementing natural resource monitoring is a challenging endeavor undertaken by many agencies, NGOs, and citizen groups worldwide. Yet many monitoring programs fail to deliver useful information for a variety of administrative (staffing, documentation, and funding) or technical (sampling design and data analysis) reasons. Programs risk failure if they lack a clear motivating problem or question, explicit objectives linked to this problem or question, and a comprehensive conceptual model of the system under study. Designers must consider what “success” looks like from a resource management perspective, how desired outcomes translate to appropriate attributes to monitor, and how they will be measured. All such efforts should be filtered through the question “Why is this important?” Failing to address these considerations will produce a program that fails to deliver the desired information. We addressed these issues through creation of a “road map” for designing and implementing a monitoring program, synthesizing multiple aspects of a monitoring program into a single, overarching framework. The road map emphasizes linkages among core decisions to ensure alignment of all components, from problem framing through technical details of data collection and analysis, to program administration. Following this framework will help avoid common pitfalls, keep projects on track and budgets realistic, and aid in program evaluations. The road map has proved useful for monitoring by individuals and teams, those planning new monitoring, and those reviewing existing monitoring and for staff with a wide range of technical and scientific skills

    Assessment of Baroreflex Control of Heart Rate During General Anesthesia Point Process Method

    No full text
    Evaluation of baroreflex control of heart rate (HR) has important implications in clinical practice of anesthesia and postoperative care. In this paper, we present a point process method to assess the dynamic baroreflex gain using a closed-loop model of the cardiovascular system. Specifically, the inverse Gaussian probability distribution is used to model the heartbeat interval, whereas the instantaneous mean is identified by a linear or bilinear bivariate regression on the previous R-R intervals and blood pressure (BP) measures. The instantaneous baroreflex gain is estimated in the feedback loop with a point process filter, while the RRrarrBP feedforward frequency response is estimated by a Kalman filter. In addition, the instantaneous cross-spectrum and cross-bispectrum (as well as their ratio) can also be estimated. All statistical indices provide a valuable quantitative assessment of the interaction between heartbeat dynamics and hemodynamics during general anesthesia.Zhe Chen et al. “Assessment of baroreflex control of heart rate during general anesthesia using a point process method.” Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on. 2009. 333-336. Web.National Institutes of Health (U.S.) (Grant R01-HL084502)National Institutes of Health (U.S.) (K25-NS05758)National Institutes of Health (U.S.) (DP1-OD003646)National Institutes of Health (U.S.) (R01-DA015644

    Broadband slow-wave modulation in posterior and anterior cortex tracks distinct states of propofol-induced unconsciousness

    Get PDF
    © 2020, The Author(s). A controversy has developed in recent years over the roles of frontal and posterior cortices in mediating consciousness and unconsciousness. Disruption of posterior cortex during sleep appears to suppress the contents of dreaming, yet activation of frontal cortex appears necessary for perception and can reverse unconsciousness under anesthesia. We used anesthesia to study how regional cortical disruption, mediated by slow wave modulation of broadband activity, changes during unconsciousness in humans. We found that broadband slow-wave modulation enveloped posterior cortex when subjects initially became unconscious, but later encompassed both frontal and posterior cortex when subjects were more deeply anesthetized and likely unarousable. Our results suggest that unconsciousness under anesthesia comprises several distinct shifts in brain state that disrupt the contents of consciousness distinct from arousal and awareness of those contents

    Linear and Nonlinear Quantification of Respiratory Sinus Arrhythmia during Propofol General Anesthesia

    No full text
    Quantitative evaluation of respiratory sinus arrhythmia (RSA) may provide important information in clinical practice of anesthesia and postoperative care. In this paper, we apply a point process method to assess dynamic RSA during propofol general anesthesia. Specifically, an inverse Gaussian probability distribution is used to model the heartbeat interval, whereas the instantaneous mean is identified by a linear or bilinear bivariate regression on the previous R-R intervals and respiratory measures. The estimated second-order bilinear interaction allows us to evaluate the nonlinear component of the RSA. The instantaneous RSA gain and phase can be estimated with an adaptive point process filter. The algorithm's ability to track non-stationary dynamics is demonstrated using one clinical recording. Our proposed statistical indices provide a valuable quantitative assessment of instantaneous cardiorespiratory control and heart rate variability (HRV) during general anesthesia.National Institutes of Health (U.S.) (Grant R01-HL084502)National Institutes of Health (U.S.) (Grant K25-NS05758)National Institutes of Health (U.S.) (Grant DP1-OD003646)National Institutes of Health (U.S.) (Grant R01-DA015644

    Tracking Brain States under General Anesthesia by Using Global Coherence Analysis

    No full text
    Time and frequency domain analyses of scalp EEG recordings are widely used to track changes in brain states under general anesthesia. Although these analyses have suggested that different spatial patterns are associated with changes in the state of general anesthesia, the extent to which these patterns are spatially coordinated has not been systematically characterized. Global coherence, the ratio of the largest eigenvalue to the sum of the eigenvalues of the cross-spectral matrix at a given frequency and time, has been used to analyze the spatiotemporal dynamics of multivariate time-series. Using 64-lead EEG recorded from human subjects receiving computer-controlled infusions of the anesthetic propofol, we used surface Laplacian referencing combined with spectral and global coherence analyses to track the spatiotemporal dynamics of the brain's anesthetic state. During unconsciousness the spectrograms in the frontal leads showed increasing α (8–12 Hz) and δ power (0–4 Hz) and in the occipital leads δ power greater than α power. The global coherence detected strong coordinated α activity in the occipital leads in the awake state that shifted to the frontal leads during unconsciousness. It revealed a lack of coordinated δ activity during both the awake and unconscious states. Although strong frontal power during general anesthesia-induced unconsciousness—termed anteriorization—is well known, its possible association with strong α range global coherence suggests highly coordinated spatial activity. Our findings suggest that combined spectral and global coherence analyses may offer a new approach to tracking brain states under general anesthesia.National Institutes of Health (NIH) (Grant DP1 OD003646)National Institutes of Health (NIH) (Grant DP2-OD006454)National Institutes of Health (NIH) (Grant K25-NS05758)National Institutes of Health (NIH) (Grant 2T32NS048005-06)National Institutes of Health (NIH) (Grant 1 UL1 RR025758-01)National Institutes of Health (NIH) (Grant M01-RR-01066

    Statistical modeling of behavioral dynamics during propofol-induced loss of consciousness

    No full text
    Background Accurate quantitative analysis of the changes in responses to external stimuli is crucial for characterizing the timing of loss and recovery of consciousness induced by anesthetic drugs. We studied induction and emergence from unconsciousness achieved by administering a computer-controlled infusion of propofol to ten human volunteers. We evaluated loss and recovery of consciousness by having subjects execute every 4 s two interleaved computer delivered behavioral tasks: responding to verbal stimuli (neutral words or the subject's name), or less salient stimuli of auditory clicks. New method We analyzed the data using state-space methods. For each stimulus type the observation model is a two-stage binomial model and the state model is two dimensional random walk in which one cognitive state governs the probability of responding and the second governs the probability of correctly responding given a response. We fit the model to the experimental data using Bayesian Monte Carlo methods. Results During induction subjects lost responsiveness to less salient clicks before losing responsiveness to the more salient verbal stimuli. During emergence subjects regained responsiveness to the more salient verbal stimuli before regaining responsiveness to the less salient clicks. Comparison with existing method(s) The current state-space model is an extension of previous model used to analyze learning and behavioral performance. In this study, the probability of responding on each trial is obtained separately from the probability of behavioral performance. Conclusions Our analysis provides a principled quantitative approach for defining loss and recovery of consciousness in experimental studies of general anesthesia.National Institutes of Health (U.S.) (R01-EB006385-01)National Institutes of Health (U.S.) (Director's Pioneer Award DP1-OD003646)National Institutes of Health (U.S.) (R01-MH071847
    corecore