2,266 research outputs found

    GLAST Prospects for Swift-Era Afterglows

    Full text link
    We calculate the GeV spectra of GRB afterglows produced by inverse Compton scattering of the sub-MeV emission of these objects. We improve on earlier treatments by using refined afterglow parameters and new model developments motivated by recent Swift observations. We present time-dependent GeV spectra for standard, constant parameter models, as well as for models with energy injection and with time-varying parameters, for a range of burst parameters. We evaluate the limiting redshift to which such afterglows can be detected by the GLAST LAT, as well as AGILE.Comment: 19 pages, 5 figures, ApJ, in pres

    Computer image analysis for intramuscular fat segmentation in dry-cured ham slices using convolutional neural networks

    Get PDF
    Determination of intramuscular fat (IMF) content in dry cured meats is critical because it affects the sensory quality and consumer's acceptability. Recently, deep learning has become one of the most promising techniques in machine learning for image analysis. However, few applications in food products are found in the literature. This study presents the application of deep learning for the detection of intramuscular fat (IMF) in images of slices of dry cured ham. 8 convolutional neural networks (CNNs) have been studied and compared using segmented images (252 for training, 61 for validation and 62 for testing). The performance was compared to other simple CNNs. CNNs were able to segment IMF with an overall pixel accuracy of 0.99 and a recall and precision rates for fat near 0.82 and 0.84, respectively, using a limited number of training images. However, performance is affected by the quality of the ground truth due to the difficulty of labelling correctly pixels.info:eu-repo/semantics/acceptedVersio

    Dynamical Equilibration Across a Quenched Phase Transition in a Trapped Quantum Gas

    Full text link
    The formation of an equilibrium quantum state from an uncorrelated thermal one through the dynamical crossing of a phase transition is a central question of non-equilibrium many-body physics. During such crossing, the system breaks its symmetry by establishing numerous uncorrelated regions separated by spontaneously-generated defects, whose emergence obeys a universal scaling law with the quench duration. Much less is known about the ensuing re-equilibrating or "coarse-graining" stage, which is governed by the evolution and interactions of such defects under system-specific and external constraints. In this work we perform a detailed numerical characterization of the entire non-equilibrium process, addressing subtle issues in condensate growth dynamics and demonstrating the quench-induced decoupling of number and coherence growth during the re-equilibration process. Our unique visualizations not only reproduce experimental measurements in the relevant regimes, but also provide valuable information in currently experimentally-inaccessible regimes.Comment: Supplementary Movie Previes: SM-Movie-1: https://youtu.be/3q7-CvuBylg SM-Movie-2: https://youtu.be/-Gymaiv9rC0 SM-Movie-3: https://youtu.be/w-O2SPiw3nE SM-Movie-4: https://youtu.be/P4xGyr4dwK

    The Mass of the Black Hole in Cygnus X-1

    Get PDF
    Cygnus X-1 is a binary star system that is comprised of a black hole and a massive giant companion star in a tight orbit. Building on our accurate distance measurement reported in the preceding paper, we first determine the radius of the companion star, thereby constraining the scale of the binary system. To obtain a full dynamical model of the binary, we use an extensive collection of optical photometric and spectroscopic data taken from the literature. By using all of the available observational constraints, we show that the orbit is slightly eccentric (both the radial velocity and photometric data independently confirm this result) and that the companion star rotates roughly 1.4 times its pseudosynchronous value. We find a black hole mass of M =14.8\pm1.0 M_{\sun}, a companion mass of M_{opt}=19.2\pm1.9 M_{\sun}, and the angle of inclination of the orbital plane to our line of sight of i=27.1\pm0.8 deg.Comment: Paper II of three papers on Cygnus X-1; 27 pages including 5 figures and 3 tables, ApJ in pres

    Modeling GRB 050904: Autopsy of a Massive Stellar Explosion at z=6.29

    Get PDF
    GRB 050904 at redshift z=6.29, discovered and observed by Swift and with spectroscopic redshift from the Subaru telescope, is the first gamma-ray burst to be identified from beyond the epoch of reionization. Since the progenitors of long gamma-ray bursts have been identified as massive stars, this event offers a unique opportunity to investigate star formation environments at this epoch. Apart from its record redshift, the burst is remarkable in two respects: first, it exhibits fast-evolving X-ray and optical flares that peak simultaneously at t~470 s in the observer frame, and may thus originate in the same emission region; and second, its afterglow exhibits an accelerated decay in the near-infrared (NIR) from t~10^4 s to t~3 10^4 s after the burst, coincident with repeated and energetic X-ray flaring activity. We make a complete analysis of available X-ray, NIR, and radio observations, utilizing afterglow models that incorporate a range of physical effects not previously considered for this or any other GRB afterglow, and quantifying our model uncertainties in detail via Markov Chain Monte Carlo analysis. In the process, we explore the possibility that the early optical and X-ray flare is due to synchrotron and inverse Compton emission from the reverse shock regions of the outflow. We suggest that the period of accelerated decay in the NIR may be due to suppression of synchrotron radiation by inverse Compton interaction of X-ray flare photons with electrons in the forward shock; a subsequent interval of slow decay would then be due to a progressive decline in this suppression. The range of acceptable models demonstrates that the kinetic energy and circumburst density of GRB 050904 are well above the typical values found for low-redshift GRBs.Comment: 45 pages, 7 figures, and ApJ accepted. Revised version, minor modifications and 1 extra figur

    A holonic approach to dynamic manufacturing scheduling

    Get PDF
    Indexado ISIManufacturing scheduling is a complex combinatorial problem, particularly in distributed and dynamic environments. This paper presents a holonic approach to manufacturing scheduling, which in opposite to traditional approaches, distributes the scheduling functions over several entities, combining their calculation power and local optimization. In this scheduling and control approach, the scheduling mechanism evolves dynamically to combine optimized scheduling, achieved by central entities, and distributed scheduling, improving its responsiveness and robustness

    Stationary wave patterns generated by an impurity moving with supersonic velocity through a Bose-Einstein condensate

    Get PDF
    Formation of stationary 3D wave patterns generated by a small point-like impurity moving through a Bose-Einstein condensate with supersonic velocity is studied. Asymptotic formulae for a stationary far-field density distribution are obtained. Comparison with three-dimensional numerical simulations demonstrates that these formulae are accurate enough already at distances from the obstacle equal to a few wavelengths.Comment: 7 pages, 3 figure

    Bending-wave Instability of a Vortex Ring in a Trapped Bose-Einstein Condensate

    Full text link
    Based on a velocity formula derived by matched asymptotic expansion, we investigate the dynamics of a circular vortex ring in an axisymmetric Bose-Einstein condensate in the Thomas-Fermi limit. The trajectory for an axisymmetrically placed and oriented vortex ring is entirely determined, revealing that the vortex ring generally precesses in condensate. The linear instability due to bending waves is investigated both numerically and analytically. General stability boundaries for various perturbed wavenumbers are computed. In particular, the excitation spectrum and the absolutely stable region for the static ring are analytically determined.Comment: 4 pages, 4 figure

    The Spin of the Black Hole Microquasar XTE J1550-564 via the Continuum-Fitting and Fe-Line Methods

    Get PDF
    We measure the spin of XTE J1550-564 in two ways: by modelling the thermal continuum spectrum of the accretion disc, and independently by modeling the broad red wing of the reflection fluorescence Fe-K line. We find that the spin measurements conducted independently using both leading methods are in agreement with one another. For the continuum-fitting analysis, we use a data sample consisting of several dozen RXTE spectra, and for the Fe-K analysis, we use a pair of ASCA spectra from a single epoch. Our spin estimate for the black hole primary using the continuum-fitting method is -0.11 < a* < 0.71 (90 per cent confidence), with a most likely spin of a* = 0.34. In obtaining this result, we have thoroughly explored the dependence of the spin value on a wide range of model-dependent systematic errors and observational errors; our precision is limited by uncertainties in the distance and orbital inclination of the system. For the Fe-line method, our estimate of spin is a* = 0.55(+0.15,-0.22). Combining these results, we conclude that the spin of this black hole is moderate, a* = 0.49(+0.13,-0.20), which suggests that the jet of this microquasar is powered largely by its accretion disc rather than by the spin energy of the black hole.Comment: 19 pages, 15 figures, submitted to MNRAS, updated abstrac
    • 

    corecore