3,351 research outputs found

    Thermal Effect on TL Response of Single Doped LiF+NaF:RE Polycrystalline Phosphors

    Get PDF
    In this work, the sintering and annealing effects on the thermoluminescent (TL) behavior of undoped and rare earth (RE)-doped LiF+NaF powder samples (RE = Ce3+, Eu3+, Lu3+ or Tl+, at 0.5 mol%) was analyzed by evaluating the sensitivity to gamma radiation and TL response of the material. The polycrystalline samples were obtained by solid state reaction at 1000°C. The samples were irradiated in a Gammacell-3000 Elan irradiator loaded with 137Cs sources. The glow curves of the LiF+NaF doped with lutetium or thallium show an intense glow peak at about 175°C and 135°C, respectively. When the phosphor was doped with cerium or europium the glow curves were complex in their structure, with TL peaks observed at 155°C and 165°C, respectively. The linear dose-response was between 10 and 50 Gy for cerium, europium or lutetium doped LiF+NaF samples, while for the thallium doped and undoped samples such intervals were 10-100 Gy and 10-500 Gy, respectively. Because the shape of the glow curves were complex, the analysis was carried out in (i) samples without a sintering treatment where the TL response was found insensitive to pre-irradiation annealing treatment, and (ii) sintered samples (300, 350, 400 or 500 °C), in this last case the TL response was dependent on the annealing temperature (100-400 °C), finally (iii) the kinetics parameters of the glow curves were analyzed by assuming a general order kinetics model. The observed glow curves and TL characteristics of the LiF+NaF:RE phosphor make attractive this material to be useful in gamma dose dosimetry

    Iron overload causes endolysosomal deficits modulated by NAADP-regulated 2-pore channels and RAB7A

    Get PDF
    Various neurodegenerative disorders are associated with increased brain iron content. Iron is known to cause oxidative stress, which concomitantly promotes cell death. Whereas endolysosomes are known to serve as intracellular iron storage organelles, the consequences of increased iron on endolysosomal functioning, and effects on cell viability upon modulation of endolysosomal iron release remain largely unknown. Here, we show that increasing intracellular iron causes endolysosomal alterations associated with impaired autophagic clearance of intracellular protein aggregates, increased cytosolic oxidative stress and increased cell death. These effects are subject to regulation by NAADP, a potent second messenger reported to target endolysosomal TPCNs (2-pore channels). Consistent with endolysosomal iron storage, cytosolic iron levels are modulated by NAADP, and increased cytosolic iron is detected when overexpressing active, but not inactive TPCNs, indicating that these channels can modulate endolysosomal iron release. Cell death triggered by altered intralysosomal iron handling is abrogated in the presence of an NAADP antagonist or when inhibiting RAB7A activity. Taken together, our results suggest that increased endolysosomal iron causes cell death associated with increased cytosolic oxidative stress as well as autophagic impairments, and these effects are subject to modulation by endolysosomal ion channel activity in a RAB7A-dependent manner. These data highlight alternative therapeutic strategies for neurodegenerative disorders associated with increased intracellular iron load

    Analisi scientifiche sulle tempere murali di Villa Pace

    Get PDF
    International audienceThe morphology, mineralogy, and solid-liquid phase separation of the Cu and Zn precipitates formed with sulfide produced in a sulfate-reducing bioreactor were studied at pH 3, 5, and 7. The precipitates formed at pH 7 display faster settling rates, better dewaterability, and higher concentrations of settleable solids as compared to the precipitates formed at pH 3 and 5. These differences were linked to the agglomeration of the sulfidic precipitates and coprecipitation of the phosphate added to the bioreactor influent. The Cu and Zn quenched the intensity of the dissolved organic matter peaks identified by fluorescence-excitation emission matrix spectroscopy, suggesting a binding mechanism that decreases supersaturation, especially at pH 5. X-ray absorption fine structure spectroscopy analyses confirmed the precipitation of Zn-S as sphalerite and Cu-S as covellite in all samples, but also revealed the presence of Zn sorbed on hydroxyapatite. These analyses further showed that CuS structures remained amorphous regardless of the pH, whereas the ZnS structure was more organized at pH 5 as compared to the ZnS formed at pH 3 and 7, in agreement with the cubic sphalerite-type structures observed through scanning electron microscopy at pH 5

    <i>Vibrio neptunius</i> sp. nov., <i>Vibrio brasiliensis</i> sp. nov. and <i>Vibrio xuii</i> sp. nov., isolated from the marine aquaculture environment (bivalves, fish, rotifers and shrimps)

    Get PDF
    The fluorescent amplified fragment length polymorphism (FAFLP) groups A5 (21 isolates), A8 (6 isolates) and A23 (3 isolates) distinguished in an earlier paper (Thompson et al., Syst Appl Microbiol 24, 520-538, 2001) were examined in more depth. These three groups were phylogenetically related to Vibrio tubiashii, but DNA-DNA hybridization experiments proved that the three AFLP groups are in fact novel species. Chemotaxonomic and phenotypic analyses further revealed several differences among the 30 isolates and known Vibrio species. It is proposed to accommodate these isolates in three novel species, namely Vibrio neptunius (type strain LMG 20536T; EMBL accession no. AJ316171; G + C content of the type strain 46·0 mol%), Vibrio brasiliensis (type strain LMG 20546T; EMBL accession no. AJ316172; G + C content of the type strain 45·9 mol%) and Vibrio xuii (type strain LMG 21346T; EMBL accession no. AJ316181; G + C content of the type strain 46·6 mol%). These species can be differentiated on the basis of phenotypic features, including fatty acid composition (particularly 14 : 0 iso, 14 : 0 iso 3-OH, 16 : 0 iso, 16 : 0, 17 : 0 and 17 : 1?8c), enzyme activities and utilization and fermentation of various carbon sources

    Assessing discards in an illegal small-scale fishery using fisher-led reporting

    Get PDF
    Funding: Newton Fund (IL 2018-Grant Agreement 414695818 James PER), Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica (PE) (FONDECYT 2018-222).About a third of all marine fish in the world are caught in Small-Scale Fisheries (SSF). SSF are increasingly recognised as essential for food security and livelihoods for vulnerable and economically fragile communities globally. Although individual SSF vessels are usually perceived as having little impact on the ecosystem, the cumulative impact of gear type and number of vessels may be substantial. Bottom trawling is a common fishing method that can greatly influence the marine ecosystem by damaging the seafloor and generating high levels of discards. However, appropriate sampling coverage using on-board observer programmes to collect these data from SSF are rare, as they are expensive and pose logistical constraints. A mobile App was used to assess whether self-reporting by fishers could provide reliable fine-scale information on fishing effort and discards over time in an illegal shrimp trawling fishery in northern Peru. Maps depicting the spatial distribution of trawling effort and the proportion of discards from observers and fishers were compared using the Similarity in Means (SIM) Index, which ranges from 0 when spatial patterns differ completely to 1 when spatial patterns are very similar. High levels of agreement between spatio-temporal patterns of effort (SIM Index = 0.81) and discards (0.96) were found between fisher and observer maps. Moreover, far greater spatial coverage was accomplished by fishers, suggesting that self-reporting via an App represents a useful approach to collect reliable fisheries data as an initial step for effective monitoring and management of these fisheries.Publisher PDFPeer reviewe
    • …
    corecore