7,710 research outputs found
Proper time and path integral representations for the commutation function
On the example of the quantized spinor field, interacting with arbitrary
external electromagnetic field, the commutation function is studied. It is
shown that a proper time representation is available in any dimensions. Using
it, all the light cone singularities of the function are found explicitly,
generalizing the Fock formula in four dimensions, and a path integral
representation is constructed.Comment: 20 pages, LaTeX, uses pictex macro
One-loop energy-momentum tensor in QED with electric-like background
We have obtained nonperturbative one-loop expressions for the mean
energy-momentum tensor and current density of Dirac's field on a constant
electric-like background. One of the goals of this calculation is to give a
consistent description of back-reaction in such a theory. Two cases of initial
states are considered: the vacuum state and the thermal equilibrium state.
First, we perform calculations for the vacuum initial state. In the obtained
expressions, we separate the contributions due to particle creation and vacuum
polarization. The latter contributions are related to the Heisenberg-Euler
Lagrangian. Then, we study the case of the thermal initial state. Here, we
separate the contributions due to particle creation, vacuum polarization, and
the contributions due to the work of the external field on the particles at the
initial state. All these contributions are studied in detail, in different
regimes of weak and strong fields and low and high temperatures. The obtained
results allow us to establish restrictions on the electric field and its
duration under which QED with a strong constant electric field is consistent.
Under such restrictions, one can neglect the back-reaction of particles created
by the electric field. Some of the obtained results generalize the calculations
of Heisenberg-Euler for energy density to the case of arbitrary strong electric
fields.Comment: 35 pages; misprints in the sign in definitions (40)-(43), and (68)
corrected, results unchange
Integration of D-dimensional 2-factor spaces cosmological models by reducing to the generalized Emden-Fowler equation
The D-dimensional cosmological model on the manifold describing the evolution of 2 Einsteinian factor spaces,
and , in the presence of multicomponent perfect fluid source is
considered. The barotropic equation of state for mass-energy densities and the
pressures of the components is assumed in each space. When the number of the
non Ricci-flat factor spaces and the number of the perfect fluid components are
both equal to 2, the Einstein equations for the model are reduced to the
generalized Emden-Fowler (second-order ordinary differential) equation, which
has been recently investigated by Zaitsev and Polyanin within discrete-group
analysis. Using the integrable classes of this equation one generates the
integrable cosmological models. The corresponding metrics are presented. The
method is demonstrated for the special model with Ricci-flat spaces
and the 2-component perfect fluid source.Comment: LaTeX file, no figure
Coherent and semiclassical states in magnetic field in the presence of the Aharonov-Bohm solenoid
A new approach to constructing coherent states (CS) and semiclassical states
(SS) in magnetic-solenoid field is proposed. The main idea is based on the fact
that the AB solenoid breaks the translational symmetry in the xy-plane, this
has a topological effect such that there appear two types of trajectories which
embrace and do not embrace the solenoid. Due to this fact, one has to construct
two different kinds of CS/SS, which correspond to such trajectories in the
semiclassical limit. Following this idea, we construct CS in two steps, first
the instantaneous CS (ICS) and the time dependent CS/SS as an evolution of the
ICS. The construction is realized for nonrelativistic and relativistic spinning
particles both in (2+1)- and (3+1)- dimensions and gives a non-trivial example
of SS/CS for systems with a nonquadratic Hamiltonian. It is stressed that CS
depending on their parameters (quantum numbers) describe both pure quantum and
semiclassical states. An analysis is represented that classifies parameters of
the CS in such respect. Such a classification is used for the semiclassical
decompositions of various physical quantities.Comment: 35 pages, 2 figures. Some typos in (77), (101), and (135) corrected
with respect to the published version. Results unchange
QED in external field with space-time uniform invariants: Exact solutions
We study exact solutions of Dirac and Klein-Gordon equations and Green functions in d-dimensional QED and in an external electromagnetic field with constant and homogeneous field invariants. The cases of even and odd dimensions are considered separately, they are essentially different. We direct attention to the asymmetry of the quasienergy spectrum, which appears in odd dimensions. The in and out classification of the exact solutions as well as the completeness and orthogonality relations is strictly proven. Different Green functions in the form of sums over the exact solutions are constructed. The Fock-Schwinger proper time integral representations of these Green functions are found. As physical applications we consider the calculations of different quantum effects related to the vacuum instability in the external field. For example, we present mean values of particles created from the vacuum, the probability of the vacuum remaining a vacuum, the effective action, and the expectation values of the current and energy-momentum tensor
Toda chains with type A_m Lie algebra for multidimensional m-component perfect fluid cosmology
We consider a D-dimensional cosmological model describing an evolution of
Ricci-flat factor spaces, M_1,...M_n (n > 2), in the presence of an m-component
perfect fluid source (n > m > 1). We find characteristic vectors, related to
the matter constants in the barotropic equations of state for fluid components
of all factor spaces.
We show that, in the case where we can interpret these vectors as the root
vectors of a Lie algebra of Cartan type A_m=sl(m+1,C), the model reduces to the
classical open m-body Toda chain.
Using an elegant technique by Anderson (J. Math. Phys. 37 (1996) 1349) for
solving this system, we integrate the Einstein equations for the model and
present the metric in a Kasner-like form.Comment: LaTeX, 2 ps figure
Quantum scalar field in FRW Universe with constant electromagnetic background
We discuss massive scalar field with conformal coupling in
Friedmann-Robertson-Walker (FRW) Universe of special type with constant
electromagnetic field. Treating an external gravitational-electromagnetic
background exactly, at first time the proper-time representations for out-in,
in-in, and out-out scalar Green functions are explicitly constructed as
proper-time integrals over the corresponding (complex) contours. The
vacuum-to-vacuum transition amplitudes and number of created particles are
found and vacuum instability is discussed. The mean values of the current and
energy-momentum tensor are evaluated, and different approximations for them are
investigated. The back reaction of the particles created to the electromagnetic
field is estimated in different regimes. The connection between proper-time
method and effective action is outlined. The effective action in scalar QED in
weakly-curved FRW Universe (De Sitter space) with weak constant electromagnetic
field is found as derivative expansion over curvature and electromagnetic field
strength. Possible further applications of the results are briefly mentioned.Comment: 38 pages, LaTe
Quantization of Point-Like Particles and Consistent Relativistic Quantum Mechanics
We revise the problem of the quantization of relativistic particle models
(spinless and spinning), presenting a modified consistent canonical scheme. One
of the main point of the modification is related to a principally new
realization of the Hilbert space. It allows one not only to include arbitrary
backgrounds in the consideration but to get in course of the quantization a
consistent relativistic quantum mechanics, which reproduces literally the
behavior of the one-particle sector of the corresponding quantum field. In
particular, in a physical sector of the Hilbert space a complete positive
spectrum of energies of relativistic particles and antiparticles is reproduced,
and all state vectors have only positive norms.Comment: 57 pages, LaTex fil
Coherent states of non-relativistic electron in magnetic-solenoid field
We construct coherent states of a nonrelativistic electron in the
magnetic-solenoid field, which is a superposition of the Aharonov-Bohm field
and a collinear uniform magnetic field. In the problem under consideration
there are two kind of coherent states, the first kind corresponds to classical
trajectories which embrace the solenoid and the second one to trajectories
which do not. Mean coordinates in the constructed coherent states are moving
along classical trajectories, the coherent states maintain their form under the
time evolution, and represent a complete set of functions, which can be useful
in semi classical calculations. In the absence of the Aharonov-Bohm filed these
states are reduced to the well-known in the case of uniform magnetic field
Malkin-Man'ko coherent states.Comment: 11 pages, version accepted for publication in J. Phys. A, 3 figures
adde
Consistency restrictions on maximal electric field strength in QFT
QFT with an external background can be considered as a consistent model only
if backreaction is relatively small with respect to the background. To find the
corresponding consistency restrictions on an external electric field and its
duration in QED and QCD, we analyze the mean energy density of quantized fields
for an arbitrary constant electric field E, acting during a large but finite
time T. Using the corresponding asymptotics with respect to the dimensionless
parameter , one can see that the leading contributions to the energy are
due to the creation of paticles by the electric field. Assuming that these
contributions are small in comparison with the energy density of the electric
background, we establish the above-mentioned restrictions, which determine, in
fact, the time scales from above of depletion of an electric field due to the
backreactionComment: 7 pages; version accepted for publication in Phys. Rev. Lett.; added
one ref. and some comment
- …