7,710 research outputs found

    Proper time and path integral representations for the commutation function

    Full text link
    On the example of the quantized spinor field, interacting with arbitrary external electromagnetic field, the commutation function is studied. It is shown that a proper time representation is available in any dimensions. Using it, all the light cone singularities of the function are found explicitly, generalizing the Fock formula in four dimensions, and a path integral representation is constructed.Comment: 20 pages, LaTeX, uses pictex macro

    One-loop energy-momentum tensor in QED with electric-like background

    Full text link
    We have obtained nonperturbative one-loop expressions for the mean energy-momentum tensor and current density of Dirac's field on a constant electric-like background. One of the goals of this calculation is to give a consistent description of back-reaction in such a theory. Two cases of initial states are considered: the vacuum state and the thermal equilibrium state. First, we perform calculations for the vacuum initial state. In the obtained expressions, we separate the contributions due to particle creation and vacuum polarization. The latter contributions are related to the Heisenberg-Euler Lagrangian. Then, we study the case of the thermal initial state. Here, we separate the contributions due to particle creation, vacuum polarization, and the contributions due to the work of the external field on the particles at the initial state. All these contributions are studied in detail, in different regimes of weak and strong fields and low and high temperatures. The obtained results allow us to establish restrictions on the electric field and its duration under which QED with a strong constant electric field is consistent. Under such restrictions, one can neglect the back-reaction of particles created by the electric field. Some of the obtained results generalize the calculations of Heisenberg-Euler for energy density to the case of arbitrary strong electric fields.Comment: 35 pages; misprints in the sign in definitions (40)-(43), and (68) corrected, results unchange

    Integration of D-dimensional 2-factor spaces cosmological models by reducing to the generalized Emden-Fowler equation

    Get PDF
    The D-dimensional cosmological model on the manifold M=R×M1×M2M = R \times M_{1} \times M_{2} describing the evolution of 2 Einsteinian factor spaces, M1M_1 and M2M_2, in the presence of multicomponent perfect fluid source is considered. The barotropic equation of state for mass-energy densities and the pressures of the components is assumed in each space. When the number of the non Ricci-flat factor spaces and the number of the perfect fluid components are both equal to 2, the Einstein equations for the model are reduced to the generalized Emden-Fowler (second-order ordinary differential) equation, which has been recently investigated by Zaitsev and Polyanin within discrete-group analysis. Using the integrable classes of this equation one generates the integrable cosmological models. The corresponding metrics are presented. The method is demonstrated for the special model with Ricci-flat spaces M1,M2M_1,M_2 and the 2-component perfect fluid source.Comment: LaTeX file, no figure

    Coherent and semiclassical states in magnetic field in the presence of the Aharonov-Bohm solenoid

    Full text link
    A new approach to constructing coherent states (CS) and semiclassical states (SS) in magnetic-solenoid field is proposed. The main idea is based on the fact that the AB solenoid breaks the translational symmetry in the xy-plane, this has a topological effect such that there appear two types of trajectories which embrace and do not embrace the solenoid. Due to this fact, one has to construct two different kinds of CS/SS, which correspond to such trajectories in the semiclassical limit. Following this idea, we construct CS in two steps, first the instantaneous CS (ICS) and the time dependent CS/SS as an evolution of the ICS. The construction is realized for nonrelativistic and relativistic spinning particles both in (2+1)- and (3+1)- dimensions and gives a non-trivial example of SS/CS for systems with a nonquadratic Hamiltonian. It is stressed that CS depending on their parameters (quantum numbers) describe both pure quantum and semiclassical states. An analysis is represented that classifies parameters of the CS in such respect. Such a classification is used for the semiclassical decompositions of various physical quantities.Comment: 35 pages, 2 figures. Some typos in (77), (101), and (135) corrected with respect to the published version. Results unchange

    QED in external field with space-time uniform invariants: Exact solutions

    Get PDF
    We study exact solutions of Dirac and Klein-Gordon equations and Green functions in d-dimensional QED and in an external electromagnetic field with constant and homogeneous field invariants. The cases of even and odd dimensions are considered separately, they are essentially different. We direct attention to the asymmetry of the quasienergy spectrum, which appears in odd dimensions. The in and out classification of the exact solutions as well as the completeness and orthogonality relations is strictly proven. Different Green functions in the form of sums over the exact solutions are constructed. The Fock-Schwinger proper time integral representations of these Green functions are found. As physical applications we consider the calculations of different quantum effects related to the vacuum instability in the external field. For example, we present mean values of particles created from the vacuum, the probability of the vacuum remaining a vacuum, the effective action, and the expectation values of the current and energy-momentum tensor

    Toda chains with type A_m Lie algebra for multidimensional m-component perfect fluid cosmology

    Get PDF
    We consider a D-dimensional cosmological model describing an evolution of Ricci-flat factor spaces, M_1,...M_n (n > 2), in the presence of an m-component perfect fluid source (n > m > 1). We find characteristic vectors, related to the matter constants in the barotropic equations of state for fluid components of all factor spaces. We show that, in the case where we can interpret these vectors as the root vectors of a Lie algebra of Cartan type A_m=sl(m+1,C), the model reduces to the classical open m-body Toda chain. Using an elegant technique by Anderson (J. Math. Phys. 37 (1996) 1349) for solving this system, we integrate the Einstein equations for the model and present the metric in a Kasner-like form.Comment: LaTeX, 2 ps figure

    Quantum scalar field in FRW Universe with constant electromagnetic background

    Get PDF
    We discuss massive scalar field with conformal coupling in Friedmann-Robertson-Walker (FRW) Universe of special type with constant electromagnetic field. Treating an external gravitational-electromagnetic background exactly, at first time the proper-time representations for out-in, in-in, and out-out scalar Green functions are explicitly constructed as proper-time integrals over the corresponding (complex) contours. The vacuum-to-vacuum transition amplitudes and number of created particles are found and vacuum instability is discussed. The mean values of the current and energy-momentum tensor are evaluated, and different approximations for them are investigated. The back reaction of the particles created to the electromagnetic field is estimated in different regimes. The connection between proper-time method and effective action is outlined. The effective action in scalar QED in weakly-curved FRW Universe (De Sitter space) with weak constant electromagnetic field is found as derivative expansion over curvature and electromagnetic field strength. Possible further applications of the results are briefly mentioned.Comment: 38 pages, LaTe

    Quantization of Point-Like Particles and Consistent Relativistic Quantum Mechanics

    Get PDF
    We revise the problem of the quantization of relativistic particle models (spinless and spinning), presenting a modified consistent canonical scheme. One of the main point of the modification is related to a principally new realization of the Hilbert space. It allows one not only to include arbitrary backgrounds in the consideration but to get in course of the quantization a consistent relativistic quantum mechanics, which reproduces literally the behavior of the one-particle sector of the corresponding quantum field. In particular, in a physical sector of the Hilbert space a complete positive spectrum of energies of relativistic particles and antiparticles is reproduced, and all state vectors have only positive norms.Comment: 57 pages, LaTex fil

    Coherent states of non-relativistic electron in magnetic-solenoid field

    Full text link
    We construct coherent states of a nonrelativistic electron in the magnetic-solenoid field, which is a superposition of the Aharonov-Bohm field and a collinear uniform magnetic field. In the problem under consideration there are two kind of coherent states, the first kind corresponds to classical trajectories which embrace the solenoid and the second one to trajectories which do not. Mean coordinates in the constructed coherent states are moving along classical trajectories, the coherent states maintain their form under the time evolution, and represent a complete set of functions, which can be useful in semi classical calculations. In the absence of the Aharonov-Bohm filed these states are reduced to the well-known in the case of uniform magnetic field Malkin-Man'ko coherent states.Comment: 11 pages, version accepted for publication in J. Phys. A, 3 figures adde

    Consistency restrictions on maximal electric field strength in QFT

    Full text link
    QFT with an external background can be considered as a consistent model only if backreaction is relatively small with respect to the background. To find the corresponding consistency restrictions on an external electric field and its duration in QED and QCD, we analyze the mean energy density of quantized fields for an arbitrary constant electric field E, acting during a large but finite time T. Using the corresponding asymptotics with respect to the dimensionless parameter eET2eET^2, one can see that the leading contributions to the energy are due to the creation of paticles by the electric field. Assuming that these contributions are small in comparison with the energy density of the electric background, we establish the above-mentioned restrictions, which determine, in fact, the time scales from above of depletion of an electric field due to the backreactionComment: 7 pages; version accepted for publication in Phys. Rev. Lett.; added one ref. and some comment
    corecore