276 research outputs found

    Gyroscopic pumping of large-scale flows in stellar interiors, and application to Lithium Dip stars

    Full text link
    The maintenance of large-scale differential rotation in stellar convective regions by rotationally influenced convective stresses also drives large-scale meridional flows by angular--momentum conservation. This process is an example of ``gyroscopic pumping'', and has recently been studied in detail in the solar context. An important question concerns the extent to which these gyroscopically pumped meridional flows penetrate into nearby stably stratified (radiative) regions, since they could potentially be an important source of non-local mixing. Here we present an extensive study of the gyroscopic pumping mechanism, using a combination of analytical calculations and numerical simulations both in Cartesian geometry and in spherical geometry. The various methods, when compared with one another, provide physical insight into the process itself, as well as increasingly sophisticated means of estimating the gyroscopic pumping rate. As an example of application, we investigate the effects of this large-scale mixing process on the surface abundances of the light elements Li and Be for stars in the mass range 1.3-1.5 solar masses (so-called ``Li-dip stars''). We find that gyroscopic pumping is a very efficient mechanism for circulating material between the surface and the deep interior, so much in fact that it over-estimates Li and Be depletion by orders of magnitude for stars on the hot side of the dip.However, when the diffusion of chemical species back into the surface convection zone is taken into account, a good fit with observed surface abundances of Li and Be as a function of stellar mass in the Hyades cluster can be found for reasonable choices of model parameters.Comment: Submitted to Ap

    On rotationally driven meridional flows in stars

    Get PDF
    A quasi-steady state model of the consequences of rotation on the hydrodynamical structure of a stellar radiative zone is derived, by studying in particular the role of centrifugal and baroclinic driving of meridional motions in angular-momentum transport. This nonlinear problem is solved numerically assuming axisymmetry of the system, and within some limits, it is shown that there exist simple analytical solutions. The limit of slow rotation recovers Eddington-Sweet theory, whereas it is shown that in the limit of rapid rotation, the system settles into a geostrophic equilibrium. The behaviour of the system is found to be controlled by one parameter only, linked to the Prantl number, the stratification and the rotation rate of the star.Comment: 5 pages, submitted to MNRAS Letter

    On the Penetration of Meridional Circulation below the Solar Convection Zone II: Models with Convection Zone, the Taylor-Proudman constraint and Applications to Other Stars

    Full text link
    The solar convection zone exhibits a strong level of differential rotation, whereby the rotation period of the polar regions is about 25-30% longer than the equatorial regions. The Coriolis force associated with these zonal flows perpetually "pumps" the convection zone fluid, and maintains a quasi-steady circulation, poleward near the surface. What is the influence of this meridional circulation on the underlying radiative zone, and in particular, does it provide a significant source of mixing between the two regions? In Paper I, we began to study this question by assuming a fixed meridional flow pattern in the convection zone and calculating its penetration depth into the radiative zone. We found that the amount of mixing caused depends very sensitively on the assumed flow structure near the radiative--convective interface. We continue this study here by including a simple model for the convection zone "pump", and calculating in a self-consistent manner the meridional flows generated in the whole Sun. We find that the global circulation timescale depends in a crucial way on two factors: the overall stratification of the radiative zone as measured by the Rossby number times the square root of the Prandtl number, and, for weakly stratified systems, the presence or absence of stresses within the radiative zone capable of breaking the Taylor-Proudman constraint. We conclude by discussing the consequences of our findings for the solar interior and argue that a potentially important mechanism for mixing in Main Sequence stars has so far been neglected.Comment: 42 pages, 13 figures. Submitted to Ap

    Double-diffusive erosion of the core of Jupiter

    Get PDF
    We present Direct Numerical Simulations of the transport of heat and heavy elements across a double-diffusive interface or a double-diffusive staircase, in conditions that are close to those one may expect to find near the boundary between the heavy-element rich core and the hydrogen-helium envelope of giant planets such as Jupiter. We find that the non-dimensional ratio of the buoyancy flux associated with heavy element transport to the buoyancy flux associated with heat transport lies roughly between 0.5 and 1, which is much larger than previous estimates derived by analogy with geophysical double-diffusive convection. Using these results in combination with a core-erosion model proposed by Guillot et al. (2004), we find that the entire core of Jupiter would be eroded within less than 1Myr assuming that the core-envelope boundary is composed of a single interface. We also propose an alternative model that is more appropriate in the presence of a well-established double-diffusive staircase, and find that in this limit a large fraction of the core could be preserved. These findings are interesting in the context of Juno's recent results, but call for further modeling efforts to better understand the process of core erosion from first principles.Comment: Accepted for publication in Ap

    Dynamics of fingering convection I: Small-scale fluxes and large-scale instabilities

    Get PDF
    Double-diffusive instabilities are often invoked to explain enhanced transport in stably-stratified fluids. The most-studied natural manifestation of this process, fingering convection, commonly occurs in the ocean's thermocline and typically increases diapycnal mixing by two orders of magnitude over molecular diffusion. Fingering convection is also often associated with structures on much larger scales, such as thermohaline intrusions, gravity waves and thermohaline staircases. In this paper, we present an exhaustive study of the phenomenon from small to large scales. We perform the first three-dimensional simulations of the process at realistic values of the heat and salt diffusivities and provide accurate estimates of the induced turbulent transport. Our results are consistent with oceanic field measurements of diapycnal mixing in fingering regions. We then develop a generalized mean-field theory to study the stability of fingering systems to large-scale perturbations, using our calculated turbulent fluxes to parameterize small-scale transport. The theory recovers the intrusive instability, the collective instability, and the gamma-instability as limiting cases. We find that the fastest-growing large-scale mode depends sensitively on the ratio of the background gradients of temperature and salinity (the density ratio). While only intrusive modes exist at high density ratios, the collective and gamma-instabilities dominate the system at the low density ratios where staircases are typically observed. We conclude by discussing our findings in the context of staircase formation theory.Comment: 23 pages, 9 figures, submitted to JF

    Turbulent transport by diffusive stratified shear flows: from local to global models. Part II: Limitations of local models

    Full text link
    This paper continues the systematic investigation of diffusive shear instabilities initiated in Part I of this series. In this work, we primarily focus on quantifying the impact of non-local mixing, which is not taken into account in Zahn's mixing model \citep{Zahn92}. We present the results of direct numerical simulations in a new model setup designed to contain coexisting laminar and turbulent shear layers. As in Part I, we use the Low P\'eclet Number approximation of \citet{Lign1999} to model the evolution of the perturbations. Our main findings are twofold. First, turbulence is not necessarily generated whenever Zahn's nonlinear criterion \citep{Zahn1974} JPr<(JPr)cJ{\rm Pr} < (J{\rm Pr})_c is satisfied, where J=N2/S2J=N^2/S^2 is the local gradient Richardson number, Pr=Îœ/ÎșT{\rm Pr} = \nu/ \kappa_T is the Prandtl number, and (JPr)c≃0.007(J{\rm Pr})_c \simeq 0.007. We have demonstrated that the presence or absence of turbulent mixing in this limit hysteretically depends on the history of the shear layer. Second, Zahn's nonlinear instability criterion only approximately locates the edge of the turbulent layer, and mixing beyond the region where JPr<(JPr)cJ{\rm Pr} < (J{\rm Pr})_c can also take place in a manner analogous to convective overshoot. We found that the turbulent kinetic energy decays roughly exponentially beyond the edge of the shear-unstable region, on a lengthscale ÎŽ\delta that is directly proportional to the scale of the turbulent eddies, which are themselves of the order of the Zahn scale (see Part I). Our results suggest that mixing by diffusive shear instabilities should be modeled with more care than is currently standard in stellar evolution codes.Comment: Submitted to Ap

    Dynamics of the solar tachocline I: an incompressible study

    Get PDF
    Gough & McIntyre have suggested that the dynamics of the solar tachocline are dominated by the advection-diffusion balance between the differential rotation, a large-scale primordial field and baroclinicly driven meridional motions. This paper presents the first part of a study of the tachocline, in which a model of the rotation profile below the convection zone is constructed along the lines suggested by Gough & McIntyre and solved numerically. In this first part, a reduced model of the tachocline is derived in which the effects of compressibility and energy transport on the system are neglected; the meridional motions are driven instead by Ekman-Hartmann pumping. It is shown that there exists only a narrow range of magnetic field strengths for which the system can achieve a nearly uniform rotation. The results are discussed with respect to observations and to the limitations of this initial approach. A following paper combines the effects of realistic baroclinic driving and stratification with a model that follows closely the lines of work of Gough & McIntyre.Comment: 18 pages, 15 figures, accepted by MNRA
    • 

    corecore