5,668 research outputs found

    Non-axisymmetric Magnetorotational Instabilities in Cylindrical Taylor-Couette Flow

    Full text link
    We study the stability of cylindrical Taylor-Couette flow in the presence of azimuthal magnetic fields, and show that one obtains non-axisymmetric magnetorotational instabilities, having azimuthal wavenumber m=1. For Omega_o/Omega_i only slightly greater than the Rayleigh value (r_i/r_o)^2, the critical Reynolds and Hartmann numbers are Re_c ~ 10^3 and Ha_c ~ 10^2, independent of the magnetic Prandtl number Pm. These values are sufficiently small that it should be possible to obtain these instabilities in the PROMISE experimental facility.Comment: final version as accepted by Phys Rev Let

    Quantum Lifshitz point in the infinite dimensional Hubbard model

    Full text link
    We show that the Gutzwiller variational wave function is surprisingly accurate for the computation of magnetic phase boundaries in the infinite dimensional Hubbard model. This allows us to substantially extend known phase diagrams. For both the half-hypercubic and the hypercubic lattice a large part of the phase diagram is occupied by an incommensurate phase, intermediate between the ferromagnetic and the paramagnetic phase. In case of the hypercubic lattice the three phases join at a new quantum Lifshitz point at which the order parameter is critical and the stiffness vanishes.Comment: 4 pages, 3 figure

    Features of gravitational waves in higher dimensions

    Full text link
    There are several fundamental differences between four-dimensional and higher-dimensional gravitational waves, namely in the so called braneworld set-up. One of them is their asymptotic behavior within the Cauchy problem. This study is connected with the so called Hadamard problem, which aims at the question of Huygens principle validity. We investigate the effect of braneworld scenarios on the character of propagation of gravitational waves on FRW background.Comment: to appear in ERE09 proceeding

    Low-voltage Ge avalanche photodetector for highly sensitive 10Gb/s Si photonic receivers

    Get PDF
    We demonstrate low-voltage germanium waveguide avalanche photodetectors (APD) with gain-bandwidth product of 88GHz. A 7.1dB sensitivity improvement is demonstrated for an APD wire-bonded to a 10Gb/s CMOS transimpedance amplifier, at -6.2V APD bias

    Stabilization of internal spaces in multidimensional cosmology

    Get PDF
    Effective 4-dimensional theories are investigated which were obtained under dimensional reduction of multidimensional cosmological models with a minimal coupled scalar field as matter source. Conditions for the internal space stabilization are considered and the possibility for inflation in the external space is discussed. The electroweak as well as the Planck fundamental scale approaches are investigated and compared with each other. It is shown that there exists a rescaling for the effective cosmological constant as well as for gravitational exciton masses in the different approaches.Comment: 12 pages, LaTeX2e, to appear in Phys.Rev.D, note adde

    Low-voltage waveguide Ge APD based high sensitivity 10 Gb/s Si photonic receiver

    Get PDF
    We demonstrate low-voltage Ge waveguide avalanche photodetectors (APDs) with gain-bandwidth product over 100GHz. A 5.8dB avalanche sensitivity improvement (1x10(-12) bit error ratio at 10Gb/s) is obtained for the wire-bonded optical receiver at -5.9V APD bias

    Huygens' Principle for the Klein-Gordon equation in the de Sitter spacetime

    Full text link
    In this article we prove that the Klein-Gordon equation in the de Sitter spacetime obeys the Huygens' principle only if the physical mass mm of the scalar field and the dimension n2n\geq 2 of the spatial variable are tied by the equation m2=(n21)/4m^2=(n^2-1)/4 . Moreover, we define the incomplete Huygens' principle, which is the Huygens' principle restricted to the vanishing second initial datum, and then reveal that the massless scalar field in the de Sitter spacetime obeys the incomplete Huygens' principle and does not obey the Huygens' principle, for the dimensions n=1,3n=1,3, only. Thus, in the de Sitter spacetime the existence of two different scalar fields (in fact, with m=0 and m2=(n21)/4m^2=(n^2-1)/4 ), which obey incomplete Huygens' principle, is equivalent to the condition n=3n=3 (in fact, the spatial dimension of the physical world). For n=3n=3 these two values of the mass are the endpoints of the so-called in quantum field theory the Higuchi bound. The value m2=(n21)/4m^2=(n^2-1)/4 of the physical mass allows us also to obtain complete asymptotic expansion of the solution for the large time. Keywords: Huygens' Principle; Klein-Gordon Equation; de Sitter spacetime; Higuchi Boun
    corecore